Axon and Myelin Sheath Segmentation in Electron Microscopy Images using Meta Learning

被引:0
|
作者
Nguyen, P. Nguyen [1 ]
Lopez, Stephanie [2 ]
Smith, Catherine L. [2 ]
Lever, Teresa E. [2 ,3 ]
Nichols, Nicole L. [2 ]
Bunyak, Filiz [1 ]
机构
[1] Univ Missouri Columbia, Dept Elect Engn & Comp Sci, Columbia, MO 65211 USA
[2] Univ Missouri Columbia, Dept Biomed Sci, Columbia, MO USA
[3] Univ Missouri Columbia, Dept Otolaryngol Head & Neck Surg, Columbia, MO USA
基金
美国国家卫生研究院;
关键词
myelin; axon; electron microscopy; meta learning;
D O I
10.1109/AIPR57179.2022.10092238
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Various neurological diseases affect the morphology of myelinated axons. Quantitative analysis of these structures and changes occurring due to neurodegeneration or neuroregeneration is of great importance for characterization of disease state and treatment response. This paper proposes a robust, meta-learning based pipeline for segmentation of axons and surrounding myelin sheaths in electron microscopy images. This is the first step towards computation of electron microscopy related bio-markers of hypoglossal nerve degeneration/regeneration. This segmentation task is challenging due to large variations in morphology and texture of myelinated axons at different levels of degeneration and very limited availability of annotated data. To overcome these difficulties, the proposed pipeline uses a meta learning-based training strategy and a U-net like encoder decoder deep neural network. Experiments on unseen test data collected at different magnification levels (i.e, trained on 500X and 1200X images, and tested on 250X and 2500X images) showed improved segmentation performance by 5% to 7% compared to a regularly trained, comparable deep learning network.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Detection of herpesvirus capsids in transmission electron microscopy images using transfer learning
    K. Shaga Devan
    P. Walther
    J. von Einem
    T. Ropinski
    H. A. Kestler
    C. Read
    Histochemistry and Cell Biology, 2019, 151 : 101 - 114
  • [42] Detection of herpesvirus capsids in transmission electron microscopy images using transfer learning
    Devan, K. Shaga
    Walther, P.
    von Einem, J.
    Ropinski, T.
    Kestler, H. A.
    Read, C.
    HISTOCHEMISTRY AND CELL BIOLOGY, 2019, 151 (02) : 101 - 114
  • [43] SEMI-SUPERVISED SEGMENTATION OF MITOCHONDRIA FROM ELECTRON MICROSCOPY IMAGES USING SPATIAL CONTINUITY
    Xiao, Yunpeng
    Zhao, Youpeng
    Yang, Ge
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [44] An Effective Deep Learning Framework for Cell Segmentation in Microscopy Images
    Lin, Sherry
    Norouzi, Narges
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3201 - 3204
  • [45] Improved cell segmentation using deep learning in label-free optical microscopy images
    Ayanzadeh, Aydin
    Ozuysal, Ozden Yalcin
    Okvur, Devrim Pesen
    Onal, Sevgi
    Toreyin, Behcet Ugur
    Unay, Devrim
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2021, 29 : 2855 - 2868
  • [46] Improved cell segmentation using deep learning in label-free optical microscopy images
    Ayanzadeh, Aydin
    Yalçin Özuysal, Özden
    Pesen Okvur, Devrim
    Önal, Sevgi
    TÖreyİn, Behçet Uğur
    Ünay, Devrim
    Turkish Journal of Electrical Engineering and Computer Sciences, 2021, 29 : 2855 - 2868
  • [47] Hierarchical level features based trainable segmentation for electron microscopy images
    Wang, Shuangling
    Cao, Guibao
    Wei, Benzheng
    Yin, Yilong
    Yang, Gongping
    Li, Chunming
    BIOMEDICAL ENGINEERING ONLINE, 2013, 12
  • [48] Automatic segmentation of Scanning Electron Microscopy images for molecular aggregation profiling
    Ourique, F
    Licks, V
    Jordan, R
    Pattichis, M
    PROCEEDINGS OF THE 25TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: A NEW BEGINNING FOR HUMAN HEALTH, 2003, 25 : 702 - 705
  • [49] Texture Indicators for Segmentation of Polyomavirus Particles in Transmission Electron Microscopy Images
    Proenca, Maria C.
    Nunes, Jose F. M.
    de Matos, Antonio P. A.
    MICROSCOPY AND MICROANALYSIS, 2013, 19 (05) : 1170 - 1182
  • [50] Carving: Scalable Interactive Segmentation of Neural Volume Electron Microscopy Images
    Straehle, C. N.
    Koethe, U.
    Knott, G.
    Hamprecht, F. A.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI 2011, PT I, 2011, 6891 : 653 - +