Axon and Myelin Sheath Segmentation in Electron Microscopy Images using Meta Learning

被引:0
|
作者
Nguyen, P. Nguyen [1 ]
Lopez, Stephanie [2 ]
Smith, Catherine L. [2 ]
Lever, Teresa E. [2 ,3 ]
Nichols, Nicole L. [2 ]
Bunyak, Filiz [1 ]
机构
[1] Univ Missouri Columbia, Dept Elect Engn & Comp Sci, Columbia, MO 65211 USA
[2] Univ Missouri Columbia, Dept Biomed Sci, Columbia, MO USA
[3] Univ Missouri Columbia, Dept Otolaryngol Head & Neck Surg, Columbia, MO USA
基金
美国国家卫生研究院;
关键词
myelin; axon; electron microscopy; meta learning;
D O I
10.1109/AIPR57179.2022.10092238
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Various neurological diseases affect the morphology of myelinated axons. Quantitative analysis of these structures and changes occurring due to neurodegeneration or neuroregeneration is of great importance for characterization of disease state and treatment response. This paper proposes a robust, meta-learning based pipeline for segmentation of axons and surrounding myelin sheaths in electron microscopy images. This is the first step towards computation of electron microscopy related bio-markers of hypoglossal nerve degeneration/regeneration. This segmentation task is challenging due to large variations in morphology and texture of myelinated axons at different levels of degeneration and very limited availability of annotated data. To overcome these difficulties, the proposed pipeline uses a meta learning-based training strategy and a U-net like encoder decoder deep neural network. Experiments on unseen test data collected at different magnification levels (i.e, trained on 500X and 1200X images, and tested on 250X and 2500X images) showed improved segmentation performance by 5% to 7% compared to a regularly trained, comparable deep learning network.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Unsupervised segmentation of noisy electron microscopy images using salient watersheds and region merging
    Navlakha, Saket
    Ahammad, Parvez
    Myers, Eugene W.
    BMC BIOINFORMATICS, 2013, 14
  • [32] Unsupervised segmentation of noisy electron microscopy images using salient watersheds and region merging
    Saket Navlakha
    Parvez Ahammad
    Eugene W Myers
    BMC Bioinformatics, 14
  • [33] Automatic lumen and anatomical layers segmentation in IVOCT images using meta learning
    Shi, Peiwen
    Xin, Jingmin
    Du, Shaoyi
    Wu, Jiayi
    Deng, Yangyang
    Cai, Zhuotong
    Zheng, Nanning
    JOURNAL OF BIOPHOTONICS, 2023, 16 (09)
  • [34] Automated segmentation of cell organelles in volume electron microscopy using deep learning
    Nesic, Nebojsa
    Heiligenstein, Xavier
    Zopf, Lydia
    Blueml, Valentin
    Keuenhof, Katharina S.
    Wagner, Michael
    Hoog, Johanna L.
    Qi, Heng
    Li, Zhiyang
    Tsaramirsis, Georgios
    Peddie, Christopher J.
    Stojmenovic, Milos
    Walter, Andreas
    MICROSCOPY RESEARCH AND TECHNIQUE, 2024, 87 (08) : 1718 - 1732
  • [35] Fine-tuning TrailMap: The utility of transfer learning to improve the performance of deep learning in axon segmentation of light-sheet microscopy images
    Oostrom, Marjolein
    Muniak, Michael A.
    Eichler West, Rogene M.
    Akers, Sarah
    Pande, Paritosh
    Obiri, Moses
    Wang, Wei
    Bowyer, Kasey
    Wu, Zhuhao
    Bramer, Lisa M.
    Mao, Tianyi
    Webb-Robertson, Bobbie Jo M.
    PLOS ONE, 2024, 19 (03):
  • [36] Adaptive Template Transformer for Mitochondria Segmentation in Electron Microscopy Images
    Pan, Yuwen
    Luo, Naisong
    Sun, Rui
    Meng, Meng
    Zhang, Tianzhu
    Xiong, Zhiwei
    Zhang, Yongdong
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 21417 - 21427
  • [37] Segmentation of virus particle candidates in transmission electron microscopy images
    Kylberg, G.
    Uppstrom, M.
    Hedlund, K. -O.
    Borgefors, G.
    Sintorn, I. -M.
    JOURNAL OF MICROSCOPY, 2012, 245 (02) : 140 - 147
  • [38] Segmentation of electron microscopy images through Gabor texture descriptors
    Navarro, R
    Nestares, O
    IMAGE AND VIDEO PROCESSING IV, 1996, 2666 : 64 - 72
  • [39] POSTNATAL DEVELOPMENT OF FELINE PARANODAL MYELIN-SHEATH SEGMENTS .2. ELECTRON MICROSCOPY
    BERTHOLD, CH
    SKOGLUND, S
    ACTA SOCIETATIS MEDICORUM UPSALIENSIS, 1968, 73 (3-4) : 127 - +
  • [40] Instance segmentation of mitochondria in electron microscopy images with a generalist deep learning model trained on a diverse dataset
    Conrad, Ryan
    Narayan, Kedar
    CELL SYSTEMS, 2023, 14 (01) : 58 - +