Instance segmentation of mitochondria in electron microscopy images with a generalist deep learning model trained on a diverse dataset

被引:21
|
作者
Conrad, Ryan [1 ,2 ]
Narayan, Kedar [1 ,2 ]
机构
[1] NCI, Ctr Mol Microscopy, Ctr Canc Res, NIH, Bethesda, MD 20892 USA
[2] Frederick Natl Lab Canc Res, Canc Res Technol Program, Frederick, MD 21702 USA
基金
美国国家卫生研究院;
关键词
RENAL-DISEASE; VOLUME; FISSION; DYSFUNCTION; FUSION;
D O I
10.1016/j.cels.2022.12.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondria are extremely pleomorphic organelles. Automatically annotating each one accurately and pre-cisely in any 2D or volume electron microscopy (EM) image is an unsolved computational challenge. Current deep learning-based approaches train models on images that provide limited cellular contexts, precluding generality. To address this, we amassed a highly heterogeneous-1.5 3 106 image 2D unlabeled cellular EM dataset and segmented-135,000 mitochondrial instances therein. MitoNet, a model trained on these re-sources, performs well on challenging benchmarks and on previously unseen volume EM datasets containing tens of thousands of mitochondria. We release a Python package and napari plugin, empanada, to rapidly run inference, visualize, and proofread instance segmentations. A record of this paper's transparent peer review process is included in the supplemental information.
引用
收藏
页码:58 / +
页数:19
相关论文
共 50 条
  • [1] A small-dataset-trained deep learning framework for identifying atoms on transmission electron microscopy images
    Yuan Chen
    Shangpeng Liu
    Peiran Tong
    Ying Huang
    He Tian
    Fang Lin
    Scientific Reports, 13
  • [2] A small-dataset-trained deep learning framework for identifying atoms on transmission electron microscopy images
    Chen, Yuan
    Liu, Shangpeng
    Tong, Peiran
    Huang, Ying
    Tian, He
    Lin, Fang
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [3] Deep learning approaches in electron microscopy imaging for mitochondria segmentation
    Oztel, Ismail
    Yolcu, Gozde
    Ersoy, Ilker
    White, Tommi A.
    Bunyak, Filiz
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2018, 21 (02) : 91 - 106
  • [4] Mitochondria Instance Segmentation in Electron Microscopy Image Volumes using 3D Deep Learning Networks
    Nguyen, Nguyen P.
    White, Tommi A.
    Bunyak, Filiz
    2021 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2021,
  • [5] Instance segmentation of quartz in iron ore optical microscopy images by deep learning
    Ferreira, Bernardo Amaral Pascarelli
    Augusto, Karen Soares
    Iglesias, Julio Cesar Alvarez
    Caldas, Thalita Dias Pinheiro
    Santos, Richard Bryan Magalhaes
    Paciornik, Sidnei
    MINERALS ENGINEERING, 2024, 211
  • [6] Microstructure segmentation with deep learning encoders pre-trained on a large microscopy dataset
    Joshua Stuckner
    Bryan Harder
    Timothy M. Smith
    npj Computational Materials, 8
  • [7] Microstructure segmentation with deep learning encoders pre-trained on a large microscopy dataset
    Stuckner, Joshua
    Harder, Bryan
    Smith, Timothy M.
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [8] A DEEP LEARNING METHOD WITH CRF FOR INSTANCE SEGMENTATION OF METAL-ORGANIC FRAMEWORKS IN SCANNING ELECTRON MICROSCOPY IMAGES
    Batatia, Ilyes
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 625 - 629
  • [9] Instance Segmentation of Underwater Images by Using Deep Learning
    Chen, Jianfeng
    Zhu, Shidong
    Luo, Weilin
    ELECTRONICS, 2024, 13 (02)
  • [10] Adaptive Template Transformer for Mitochondria Segmentation in Electron Microscopy Images
    Pan, Yuwen
    Luo, Naisong
    Sun, Rui
    Meng, Meng
    Zhang, Tianzhu
    Xiong, Zhiwei
    Zhang, Yongdong
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 21417 - 21427