Instance segmentation of mitochondria in electron microscopy images with a generalist deep learning model trained on a diverse dataset

被引:21
|
作者
Conrad, Ryan [1 ,2 ]
Narayan, Kedar [1 ,2 ]
机构
[1] NCI, Ctr Mol Microscopy, Ctr Canc Res, NIH, Bethesda, MD 20892 USA
[2] Frederick Natl Lab Canc Res, Canc Res Technol Program, Frederick, MD 21702 USA
基金
美国国家卫生研究院;
关键词
RENAL-DISEASE; VOLUME; FISSION; DYSFUNCTION; FUSION;
D O I
10.1016/j.cels.2022.12.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondria are extremely pleomorphic organelles. Automatically annotating each one accurately and pre-cisely in any 2D or volume electron microscopy (EM) image is an unsolved computational challenge. Current deep learning-based approaches train models on images that provide limited cellular contexts, precluding generality. To address this, we amassed a highly heterogeneous-1.5 3 106 image 2D unlabeled cellular EM dataset and segmented-135,000 mitochondrial instances therein. MitoNet, a model trained on these re-sources, performs well on challenging benchmarks and on previously unseen volume EM datasets containing tens of thousands of mitochondria. We release a Python package and napari plugin, empanada, to rapidly run inference, visualize, and proofread instance segmentations. A record of this paper's transparent peer review process is included in the supplemental information.
引用
收藏
页码:58 / +
页数:19
相关论文
共 50 条
  • [31] Mitochondria Segmentation in Electron Microscopy Volumes using Deep Convolutional Neural Network
    Oztel, Ismail
    Yolcu, Gozde
    Ersoy, Ilker
    White, Tommi
    Bunyak, Filiz
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 1195 - 1200
  • [32] Stable Deep Neural Network Architectures for Mitochondria Segmentation on Electron Microscopy Volumes
    Franco-Barranco, Daniel
    Munoz-Barrutia, Arrate
    Arganda-Carreras, Ignacio
    NEUROINFORMATICS, 2022, 20 (02) : 437 - 450
  • [33] Stable Deep Neural Network Architectures for Mitochondria Segmentation on Electron Microscopy Volumes
    Daniel Franco-Barranco
    Arrate Muñoz-Barrutia
    Ignacio Arganda-Carreras
    Neuroinformatics, 2022, 20 : 437 - 450
  • [34] Instance-level Segmentation Method for Group Pig Images Based on Deep Learning
    Gao Y.
    Guo J.
    Li X.
    Lei M.
    Lu J.
    Tong Y.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2019, 50 (04): : 179 - 187
  • [35] Application Method of Deep Learning Model Trained with CG Images to Real Images
    Kudo, Tsukasa
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KSE 2021), 2021, 192 : 1484 - 1493
  • [36] SheepInst: A High-Performance Instance Segmentation of Sheep Images Based on Deep Learning
    Zhao, Hongke
    Mao, Rui
    Li, Mei
    Li, Bin
    Wang, Meili
    ANIMALS, 2023, 13 (08):
  • [37] Streamlining deep-learning-based segmentation methods for microscopy images
    Dunster, Gideon
    Viana, Matheus Palhares
    Rafelski, Susanne M.
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 430A - 431A
  • [38] Segmentation of Cell Nuclei in Fluorescence Microscopy Images Using Deep Learning
    Narotamo, Hemaxi
    Sanches, J. Miguel
    Silveira, Margarida
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT I, 2020, 11867 : 53 - 64
  • [39] Deep Learning Approaches for Head and Operculum Segmentation in Zebrafish Microscopy Images
    Kumar, Navdeep
    Carletti, Alessio
    Gavaia, Paulo J.
    Muller, Marc
    Cancela, M. Leonor
    Geurts, Pierre
    Maree, Raphael
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2021, PT 1, 2021, 13052 : 154 - 164
  • [40] Distributed Deep Learning Model for Predicting the Risk of Diabetes, Trained on Imbalanced Dataset
    Mamuleanu, Madalin
    Ionete, Cosmin
    Albita, Anca
    Selisteanu, Dan
    2022 23RD INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2022, : 315 - 318