Instance segmentation of mitochondria in electron microscopy images with a generalist deep learning model trained on a diverse dataset

被引:21
|
作者
Conrad, Ryan [1 ,2 ]
Narayan, Kedar [1 ,2 ]
机构
[1] NCI, Ctr Mol Microscopy, Ctr Canc Res, NIH, Bethesda, MD 20892 USA
[2] Frederick Natl Lab Canc Res, Canc Res Technol Program, Frederick, MD 21702 USA
基金
美国国家卫生研究院;
关键词
RENAL-DISEASE; VOLUME; FISSION; DYSFUNCTION; FUSION;
D O I
10.1016/j.cels.2022.12.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondria are extremely pleomorphic organelles. Automatically annotating each one accurately and pre-cisely in any 2D or volume electron microscopy (EM) image is an unsolved computational challenge. Current deep learning-based approaches train models on images that provide limited cellular contexts, precluding generality. To address this, we amassed a highly heterogeneous-1.5 3 106 image 2D unlabeled cellular EM dataset and segmented-135,000 mitochondrial instances therein. MitoNet, a model trained on these re-sources, performs well on challenging benchmarks and on previously unseen volume EM datasets containing tens of thousands of mitochondria. We release a Python package and napari plugin, empanada, to rapidly run inference, visualize, and proofread instance segmentations. A record of this paper's transparent peer review process is included in the supplemental information.
引用
收藏
页码:58 / +
页数:19
相关论文
共 50 条
  • [21] Deep learning for three-dimensional segmentation of electron microscopy images of complex ceramic materials
    Yu Hirabayashi
    Haruka Iga
    Hiroki Ogawa
    Shinnosuke Tokuta
    Yusuke Shimada
    Akiyasu Yamamoto
    npj Computational Materials, 10
  • [22] Deep learning for three-dimensional segmentation of electron microscopy images of complex ceramic materials
    Hirabayashi, Yu
    Iga, Haruka
    Ogawa, Hiroki
    Tokuta, Shinnosuke
    Shimada, Yusuke
    Yamamoto, Akiyasu
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [23] Deep-Learning-Based Segmentation of Small Extracellular Vesicles in Transmission Electron Microscopy Images
    Estibaliz Gómez-de-Mariscal
    Martin Maška
    Anna Kotrbová
    Vendula Pospíchalová
    Pavel Matula
    Arrate Muñoz-Barrutia
    Scientific Reports, 9
  • [24] LEARNING MULTISCALE CONSISTENCY FOR SELF-SUPERVISED ELECTRON MICROSCOPY INSTANCE SEGMENTATION
    Chen, Yinda
    Huang, Wei
    Liu, Xiaoyu
    Deng, Shiyu
    Chen, Qi
    Xiong, Zhiwei
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 1566 - 1570
  • [25] Instance Segmentation and Number Counting of Grape Berry Images Based on Deep Learning
    Chen, Yanmin
    Li, Xiu
    Jia, Mei
    Li, Jiuliang
    Hu, Tianyang
    Luo, Jun
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [26] An Effective Deep Learning Framework for Cell Segmentation in Microscopy Images
    Lin, Sherry
    Norouzi, Narges
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3201 - 3204
  • [27] Interpretation of the Outputs of a Deep Learning Model Trained with a Skin Cancer Dataset
    Han, Seung Seog
    Lim, Woohyung
    Kim, Myoung Shin
    Park, Ilwoo
    Park, Gyeong Hun
    Chang, Sung Eun
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2018, 138 (10) : 2275 - 2277
  • [28] Unsupervised Learning of Object-Centric Embeddings for Cell Instance Segmentation in Microscopy Images
    Wolf, Steffen
    Lalit, Manan
    McDole, Katie
    Funke, Jan
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 21206 - 21215
  • [29] LEARNING METRIC GRAPHS FOR NEURON SEGMENTATION IN ELECTRON MICROSCOPY IMAGES
    Luther, Kyle
    Seung, H. Sebastian
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 244 - 248
  • [30] Instance segmentation of mouse brain scanning electron microscopy images based on fine-tuning nature image model
    Cheng, Ao
    Zhao, Guoqiang
    Zhang, Ruobing
    Wang, Lirong
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (18): : 2836 - 2845