An Effective Deep Learning Framework for Cell Segmentation in Microscopy Images

被引:8
|
作者
Lin, Sherry [1 ]
Norouzi, Narges [1 ]
机构
[1] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA
关键词
D O I
10.1109/EMBC46164.2021.9629863
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cell segmentation is a common step in cell behavior analysis. Reliably and automatically segmenting cells in microscopy images remains challenging, especially in differential inference contrast microscopy images and phase-contrast microscopy images. In this paper, we propose a deep learning solution combining a Mask RCNN architecture with Shape-Aware Loss to produce cell instance segmentation. Our approach outperforms prior works in cell segmentation, achieving an IOU of 91.91% on the DIC-C2DH-HeLa dataset and an IOU of 94.93 % on the PhC-C2DH-U373 dataset. Our framework can calculate cell instance segmentation masks from both types of microscopy images without any additional post-processing.
引用
收藏
页码:3201 / 3204
页数:4
相关论文
共 50 条
  • [1] Segmentation of Cell Nuclei in Fluorescence Microscopy Images Using Deep Learning
    Narotamo, Hemaxi
    Sanches, J. Miguel
    Silveira, Margarida
    [J]. PATTERN RECOGNITION AND IMAGE ANALYSIS, PT I, 2020, 11867 : 53 - 64
  • [2] Combined Detection and Segmentation of Cell Nuclei in Microscopy Images Using Deep Learning
    Ram, Sundaresh
    Nguyen, Vicky T.
    Limesand, Kirsten H.
    Rodriguez, Jeffrey J.
    [J]. 2020 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI 2020), 2020, : 26 - 29
  • [3] A Deep Framework for Cell Mitosis Detection in Microscopy Images
    Shi, Jian
    Xin, Yi
    Xu, Benlian
    Lu, Mingli
    Cong, Jinliang
    [J]. 2020 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2020), 2020, : 100 - 103
  • [4] NuClick: A deep learning framework for interactive segmentation of microscopic images
    Koohbanani, Navid Alemi
    Jahanifar, Mostafa
    Tajadin, Neda Zamani
    Rajpoot, Nasir
    [J]. MEDICAL IMAGE ANALYSIS, 2020, 65
  • [5] Improved cell segmentation using deep learning in label-free optical microscopy images
    Ayanzadeh, Aydin
    Ozuysal, Ozden Yalcin
    Okvur, Devrim Pesen
    Onal, Sevgi
    Toreyin, Behcet Ugur
    Unay, Devrim
    [J]. TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2021, 29 : 2855 - 2868
  • [6] A deep learning-based algorithm for 2-D cell segmentation in microscopy images
    Al-Kofahi, Yousef
    Zaltsman, Alla
    Graves, Robert
    Marshall, Will
    Rusu, Mirabela
    [J]. BMC BIOINFORMATICS, 2018, 19
  • [7] Test-time augmentation for deep learning-based cell segmentation on microscopy images
    Nikita Moshkov
    Botond Mathe
    Attila Kertesz-Farkas
    Reka Hollandi
    Peter Horvath
    [J]. Scientific Reports, 10
  • [8] Comparing Deep Learning Performance for Chronic Lymphocytic Leukaemia Cell Segmentation in Brightfield Microscopy Images
    Vasinkova, Marketa
    Dolezi, Vit
    Vasinek, Michal
    Gajdos, Petr
    Kriegova, Eva
    [J]. BIOINFORMATICS AND BIOLOGY INSIGHTS, 2024, 18
  • [9] Improved cell segmentation using deep learning in label-free optical microscopy images
    Ayanzadeh, Aydin
    Yalçin Özuysal, Özden
    Pesen Okvur, Devrim
    Önal, Sevgi
    TÖreyİn, Behçet Uğur
    Ünay, Devrim
    [J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2021, 29 : 2855 - 2868
  • [10] Test-time augmentation for deep learning-based cell segmentation on microscopy images
    Moshkov, Nikita
    Mathe, Botond
    Kertesz-Farkas, Attila
    Hollandi, Reka
    Horvath, Peter
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)