A new data structure for accelerating kinetic Monte Carlo method

被引:0
|
作者
Zheng, Xu-Li [1 ,4 ]
Quan, Dong-Hui [1 ,2 ]
Zhang, Hai-Long [1 ]
Li, Xiao-Hu [1 ]
Chang, Qiang [1 ]
Sipila, Olli [3 ]
机构
[1] Chinese Acad Sci, Xinjiang Astron Observ, Urumqi 830011, Peoples R China
[2] Eastern Kentucky Univ, Dept Chem, Richmond, KY 40475 USA
[3] Max Planck Inst Extraterr Phys MPE, Giessenbachstr 1, D-85748 Garching, Germany
[4] Univ Chinese Acad Sci, Sch Astron & Space Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
astrochemistry; molecular processes; methods: numerical; ISM: molecules; ISM: abundances; DENSE INTERSTELLAR CLOUDS; GAS-GRAIN CHEMISTRY; MODELS; SIMULATION; MANTLES; PHASE;
D O I
10.1088/1674-4527/19/12/176
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The kinetic Monte Carlo simulation is a rigorous numerical approach to study the chemistry on dust grains in cold dense interstellar clouds. By tracking every single reaction in chemical networks step by step, this approach produces more precise results than other approaches but takes too much computing time. Here we present a method of a new data structure, which is applicable to any physical conditions and chemical networks, to save computing time for the Monte Carlo algorithm. Using the improved structure, the calculating time is reduced by 80 percent compared with the linear structure when applied to the osu-2008 chemical network at 10 K. We investigate the effect of the encounter desorption in cold cores using the kinetic Monte Carlo model with an accelerating data structure. We found that the encounter desorption remarkably decreases the abundance of grain-surface H-2 but slightly influences the abundances of other species on the grain.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A parallel Monte Carlo method for electron quantum kinetic equation
    Gurov, TV
    Dimov, IT
    LARGE-SCALE SCIENTIFIC COMPUTING, 2003, 2907 : 153 - 161
  • [32] Method to account for arbitrary strains in kinetic Monte Carlo simulations
    Subramanian, Gopinath
    Perez, Danny
    Uberuaga, Blas P.
    Tome, Carlos N.
    Voter, Arthur F.
    PHYSICAL REVIEW B, 2013, 87 (14)
  • [33] USE OF MONTE-CARLO METHOD FOR KINETIC PROCESS MODELING
    BASOV, YG
    VOITIK, IG
    MELCHENK.VS
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1973, (10): : 55 - 60
  • [34] Simulation of Electrochemical Metallization RRAM by Kinetic Monte Carlo Method
    Liu Kai
    Zhang Kailiang
    Wang Fang
    Zhao Jinshi
    CHINA SEMICONDUCTOR TECHNOLOGY INTERNATIONAL CONFERENCE 2012 (CSTIC 2012), 2012, 44 (01): : 93 - 98
  • [35] Conformation-family Monte Carlo: A new method for crystal structure prediction
    Pillardy, J
    Arnautova, YA
    Czaplewski, C
    Gibson, KD
    Scheraga, HA
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (22) : 12351 - 12356
  • [36] Accelerating the molecular time steps for nanomechanical simulations: Hybrid Monte Carlo method
    Tomar, Vikas
    JOURNAL OF APPLIED PHYSICS, 2007, 101 (10)
  • [37] Accelerating mesh-based Monte Carlo method on modern CPU architectures
    Fang, Qianqian
    Kaeli, David R.
    BIOMEDICAL OPTICS EXPRESS, 2012, 3 (12):
  • [38] Accelerating Proximal Markov Chain Monte Carlo by Using an Explicit Stabilized Method
    Pereyra, Marcelo
    Mieles, Luis Vargas
    Zygalakis, Konstantinos C.
    SIAM JOURNAL ON IMAGING SCIENCES, 2020, 13 (02): : 905 - 935
  • [39] ON A NEW VARIANT OF THE MONTE-CARLO METHOD
    BOROVKOV, KA
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1991, 36 (02) : 355 - 360
  • [40] New Kinetic Monte Carlo Model to Study the Dissolution of Quartz
    Martin, Pablo
    Gaitero, Juan J.
    Dolado, Jorge S.
    Manzano, Hegoi
    ACS EARTH AND SPACE CHEMISTRY, 2021, 5 (03): : 516 - 524