A new data structure for accelerating kinetic Monte Carlo method

被引:0
|
作者
Zheng, Xu-Li [1 ,4 ]
Quan, Dong-Hui [1 ,2 ]
Zhang, Hai-Long [1 ]
Li, Xiao-Hu [1 ]
Chang, Qiang [1 ]
Sipila, Olli [3 ]
机构
[1] Chinese Acad Sci, Xinjiang Astron Observ, Urumqi 830011, Peoples R China
[2] Eastern Kentucky Univ, Dept Chem, Richmond, KY 40475 USA
[3] Max Planck Inst Extraterr Phys MPE, Giessenbachstr 1, D-85748 Garching, Germany
[4] Univ Chinese Acad Sci, Sch Astron & Space Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
astrochemistry; molecular processes; methods: numerical; ISM: molecules; ISM: abundances; DENSE INTERSTELLAR CLOUDS; GAS-GRAIN CHEMISTRY; MODELS; SIMULATION; MANTLES; PHASE;
D O I
10.1088/1674-4527/19/12/176
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The kinetic Monte Carlo simulation is a rigorous numerical approach to study the chemistry on dust grains in cold dense interstellar clouds. By tracking every single reaction in chemical networks step by step, this approach produces more precise results than other approaches but takes too much computing time. Here we present a method of a new data structure, which is applicable to any physical conditions and chemical networks, to save computing time for the Monte Carlo algorithm. Using the improved structure, the calculating time is reduced by 80 percent compared with the linear structure when applied to the osu-2008 chemical network at 10 K. We investigate the effect of the encounter desorption in cold cores using the kinetic Monte Carlo model with an accelerating data structure. We found that the encounter desorption remarkably decreases the abundance of grain-surface H-2 but slightly influences the abundances of other species on the grain.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Crystal structure solution from powder diffraction data by the Monte Carlo method
    Harris, KDM
    Kariuki, BM
    Tremayne, M
    EPDIC 5, PTS 1 AND 2, 1998, 278-2 : 32 - 37
  • [22] Crystal structure solution from powder diffraction data by the Monte Carlo method
    Harris, K.D.M.
    Kariuki, B.M.
    Tremayne, M.
    Materials Science Forum, 1998, 278-281 (Pt 1): : 32 - 37
  • [23] Method of Monte Carlo grid for data analysis
    Filipowicz, M
    Bystritsky, VM
    Knowles, PE
    Mulhauser, F
    Wozniak, J
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 547 (2-3): : 652 - 662
  • [24] Efficient 3D kinetic monte carlo method for modeling of molecular structure and dynamics
    Panshenskov, Mikhail
    Solov'yov, Ilia A.
    Solov'yov, Andrey V.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2014, 35 (17) : 1317 - 1329
  • [25] A Monte Carlo Method to Data Stream Analysis
    Kerdprasop, Kittisak
    Kerdprasop, Nittaya
    Sattayatham, Pairote
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 14, 2006, 14 : 240 - +
  • [26] A NEW MONTE CARLO APPROACH TO STRUCTURE SOLUTION FROM POWDER DATA.
    Andreev, Yuri G.
    Lightfoot, Philip
    Bruce, Peter G.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1996, 52 : C61 - C61
  • [27] General Method for Speeding Up Kinetic Monte Carlo Simulations
    Rego, Artur S. C.
    Brandao, Amanda L. T.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (19) : 9034 - 9042
  • [28] Kinetic Monte Carlo method for dislocation migration in the presence of solute
    Deo, CS
    Srolovitz, DJ
    Cai, W
    Bulatov, VV
    PHYSICAL REVIEW B, 2005, 71 (01)
  • [29] A MONTE-CARLO METHOD FOR THE SIMULATION OF KINETIC-MODELS
    LAVOREL, J
    PHOTOSYNTHESIS RESEARCH, 1986, 9 (1-2) : 273 - 283
  • [30] A kinetic Monte Carlo method for the simulation of massive phase transformations
    Bos, C
    Sommer, F
    Mittemeijer, EJ
    ACTA MATERIALIA, 2004, 52 (12) : 3545 - 3554