On Clustering fMRI Using Potts and Mixture Regression Models

被引:2
|
作者
Xia, Jing [1 ]
Liang, Feng [1 ]
Wang, Yongmei Michelle [2 ]
机构
[1] Univ Illinois, Dept Stat, Champaign, IL 61820 USA
[2] Univ Illinois, Psychol & Bioengn, Dept Stat, Champaign, IL 61820 USA
关键词
D O I
10.1109/IEMBS.2009.5332641
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, we propose a model based clustering method for functional magnetic resonance imaging (fMRI) data to detect the functional connectivity network. The Potts model, which represents spatial interactions of neighboring voxels, is introduced to integrate the temporal mixture regression modeling into one single unified model. The estimation of the parameters is achieved through a restoration maximization (RM) algorithm for computation efficiency and accuracy. Additional features of our method include: the optimal number of clusters can be automatically determined; global trends and informative paradigms of the data are extracted by a dimension reduction algorithm based on principal component analysis (PCA) and a statistical significance test. Experimental results demonstrate that our approach can lead to robust and sensitive detection of functional networks.
引用
收藏
页码:4795 / +
页数:2
相关论文
共 50 条
  • [31] Repeated measures regression mixture models
    Minjung Kim
    M. Lee Van Horn
    Thomas Jaki
    Jeroen Vermunt
    Daniel Feaster
    Kenneth L. Lichstein
    Daniel J. Taylor
    Brant W. Riedel
    Andrew J. Bush
    Behavior Research Methods, 2020, 52 : 591 - 606
  • [32] Robust Mixture of Linear Regression Models
    Bashir, Shaheena
    Carter, E. M.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (18) : 3371 - 3388
  • [33] Hypothesis testing in mixture regression models
    Zhu, HT
    Zhang, HP
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 3 - 16
  • [34] Robust fitting of mixture regression models
    Bai, Xiuqin
    Yao, Weixin
    Boyer, John E.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (07) : 2347 - 2359
  • [35] Repeated measures regression mixture models
    Kim, Minjung
    Van Horne, M. Lee
    Jaki, Thomas
    Vermunt, Jeroen
    Feasters, Daniel
    Lichstein, Kenneth L.
    Taylor, Daniel J.
    Riedel, Brant W.
    Bush, Andrew J.
    BEHAVIOR RESEARCH METHODS, 2020, 52 (02) : 591 - 606
  • [36] Semiparametric mixture of additive regression models
    Zhang, Yi
    Zheng, Qingle
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (03) : 681 - 697
  • [37] Frailty regression models in mixture distributions
    Hanagal, David D.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (08) : 2462 - 2468
  • [38] FUNCTIONAL FINITE MIXTURE REGRESSION MODELS
    Wang, Xiao
    Liu, Leo Yu-Feng
    Zhu, Hongtu
    STATISTICA SINICA, 2023, 33 (03) : 2087 - 2115
  • [39] Fitting Censored and Truncated Regression Data Using the Mixture of Experts Models
    Fung, Tsz Chai
    Badescu, Andrei L.
    Lin, X. Sheldon
    NORTH AMERICAN ACTUARIAL JOURNAL, 2022, 26 (04) : 496 - 520
  • [40] Fitting Censored and Truncated Regression Data Using the Mixture of Experts Models
    Fung, Tsz Chai
    Badescu, Andrei L.
    Lin, X. Sheldon
    NORTH AMERICAN ACTUARIAL JOURNAL, 2021,