Robust Mixture of Linear Regression Models

被引:19
|
作者
Bashir, Shaheena [1 ]
Carter, E. M. [2 ]
机构
[1] Aga Khan Univ, Dept Community Hlth Sci, Karachi, Pakistan
[2] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
关键词
Biweight function; Emalgorithm; Mixture models; S-estimators; MAXIMUM-LIKELIHOOD;
D O I
10.1080/03610926.2011.558655
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article proposes a robust model for parameter estimation when modeling in the presence of latent heterogeneity of population. Mixture of regression models are used for modeling when the data are a mixture of subgroups to allow for heterogeneity of the population. Parameter estimates from standard mixture of linear regression models are sensitive to atypical observations. To study mixtures of linear regression models, we introduce a class of robust estimators, called S-estimators. We investigate their breakdown point in mixture of linear regression models. It is expected that the robust S-estimators can achieve the high breakdown point in the contaminated data from the heterogenous populations. This model presents a unified, robust framework and parameter estimation is achieved via an expectation-conditional maximization (ECM) algorithm. This new family of robust mixture models is validated through Monte Carlo simulations. The application to real life data sets has shown that use of robust S-estimators in mixture of linear regression models accommodates the outliers producing stable estimates as compared to maximum likelihood estimators from mixture of linear regression models.
引用
收藏
页码:3371 / 3388
页数:18
相关论文
共 50 条
  • [1] Robust variable selection for mixture linear regression models
    Jiang, Yunlu
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (02): : 549 - 559
  • [2] Robust fitting of mixture regression models
    Bai, Xiuqin
    Yao, Weixin
    Boyer, John E.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (07) : 2347 - 2359
  • [3] Gaussian Scale Mixture Models for Robust Linear Multivariate Regression with Missing Data
    Ala-Luhtala, Juha
    Piche, Robert
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (03) : 791 - 813
  • [4] A mixture of linear-linear regression models for a linear-circular regression
    Sikaroudi, Ali Esmaieeli
    Park, Chiwoo
    [J]. STATISTICAL MODELLING, 2021, 21 (03) : 220 - 243
  • [5] Maximum Likelihood Robust Regression by Mixture Models
    Sami S. Brandt
    [J]. Journal of Mathematical Imaging and Vision, 2006, 25 : 25 - 48
  • [6] Maximum likelihood robust regression by mixture models
    Brandt, Sami S.
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 25 (01) : 25 - 48
  • [7] Robust multivariate mixture regression models with incompletedata
    Lim, Hwa Kyung
    Narisetty, Naveen N.
    Cheon, Sooyoung
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (02) : 328 - 347
  • [8] Robust Functional Linear Regression Models
    Beyaztas, Ufuk
    Shang, Han Lin
    [J]. R JOURNAL, 2023, 15 (01): : 212 - 233
  • [9] Robust variable selection for finite mixture regression models
    Tang, Qingguo
    Karunamuni, R. J.
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2018, 70 (03) : 489 - 521
  • [10] Robust variable selection for finite mixture regression models
    Qingguo Tang
    R. J. Karunamuni
    [J]. Annals of the Institute of Statistical Mathematics, 2018, 70 : 489 - 521