On Clustering fMRI Using Potts and Mixture Regression Models

被引:2
|
作者
Xia, Jing [1 ]
Liang, Feng [1 ]
Wang, Yongmei Michelle [2 ]
机构
[1] Univ Illinois, Dept Stat, Champaign, IL 61820 USA
[2] Univ Illinois, Psychol & Bioengn, Dept Stat, Champaign, IL 61820 USA
关键词
D O I
10.1109/IEMBS.2009.5332641
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, we propose a model based clustering method for functional magnetic resonance imaging (fMRI) data to detect the functional connectivity network. The Potts model, which represents spatial interactions of neighboring voxels, is introduced to integrate the temporal mixture regression modeling into one single unified model. The estimation of the parameters is achieved through a restoration maximization (RM) algorithm for computation efficiency and accuracy. Additional features of our method include: the optimal number of clusters can be automatically determined; global trends and informative paradigms of the data are extracted by a dimension reduction algorithm based on principal component analysis (PCA) and a statistical significance test. Experimental results demonstrate that our approach can lead to robust and sensitive detection of functional networks.
引用
收藏
页码:4795 / +
页数:2
相关论文
共 50 条
  • [11] Simultaneous feature selection and clustering using mixture models
    Law, MHC
    Figueiredo, MAT
    Jain, AK
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (09) : 1154 - 1166
  • [12] Discrete data clustering using finite mixture models
    Bouguila, Nizar
    ElGuebaly, Walid
    PATTERN RECOGNITION, 2009, 42 (01) : 33 - 42
  • [13] Subspace Clustering by Mixture of Gaussian Regression
    Li, Baohua
    Zhang, Ying
    Lin, Zhouchen
    Lu, Huchuan
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 2094 - 2102
  • [14] DIMENSION REDUCTION IN REGRESSION USING GAUSSIAN MIXTURE MODELS
    Mirbagheri, Majid
    Xu, Yanbo
    Shamma, Shihab
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 2169 - 2172
  • [15] Bayesian subgroup analysis in regression using mixture models
    Im, Yunju
    Tan, Aixin
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 162
  • [16] Clustering of trend data using joinpoint regression models
    Kim, Hyune-Ju
    Luo, Jun
    Kim, Jeankyung
    Chen, Huann-Sheng
    Feuer, Eric J.
    STATISTICS IN MEDICINE, 2014, 33 (23) : 4087 - 4103
  • [17] Clustering with block mixture models
    Govaert, G
    Nadif, M
    PATTERN RECOGNITION, 2003, 36 (02) : 463 - 473
  • [18] An Adaptive Regression Mixture Model for fMRI Cluster Analysis
    Oikonomou, Vangelis P.
    Blekas, Konstantinos
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (04) : 649 - 659
  • [19] Nonparametric Mixture of Regression Models
    Huang, Mian
    Li, Runze
    Wang, Shaoli
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (503) : 929 - 941
  • [20] Image segmentation using spectral clustering of Gaussian mixture models
    Zeng, Shan
    Huang, Rui
    Kang, Zhen
    Sang, Nong
    NEUROCOMPUTING, 2014, 144 : 346 - 356