Discrete data clustering using finite mixture models

被引:36
|
作者
Bouguila, Nizar [1 ]
ElGuebaly, Walid [1 ]
机构
[1] Concordia Univ, Concordia Inst Informat Syst Engn, Fac Engn & Comp Sci, Montreal, PQ H3G 2W1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Discrete data; Finite mixture models; Multinomial; Generalized Dirichlet distribution; EM; Spatial color; Image databases; Labeled and unlabeled images; Summarization; Text classification; GENERALIZED DIRICHLET DISTRIBUTION; UNSUPERVISED SELECTION; IMAGE RETRIEVAL; ALGORITHM; CLASSIFICATION; PROBABILITIES; DATABASES;
D O I
10.1016/j.patcog.2008.06.022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Finite mixture models have been applied for different computer vision, image processing and pattern recognition tasks. The majority of the work done concerning finite mixture models has focused on mixtures for continuous data. However, many applications involve and generate discrete data for which discrete Mixtures are better suited. In this paper, we investigate the problem of discrete data modeling using finite mixture models. We propose a novel, well motivated mixture that we call the multinomial generalized Dirichlet Mixture. The novel model is compared with other discrete Mixtures. We designed experiments involving spatial color image databases modeling and summarization, and text classification to show the robustness, flexibility and merits of our approach. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:33 / 42
页数:10
相关论文
共 50 条
  • [1] Data Clustering using Variational Learning of Finite Scaled Dirichlet Mixture Models
    Hieu Nguyen
    Azam, Muhammad
    Bouguila, Nizar
    [J]. 2019 IEEE 28TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2019, : 1391 - 1396
  • [2] Unsupervised clustering using nonparametric finite mixture models
    Hunter, David R. R.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2024, 16 (01)
  • [3] Data Clustering using Online Variational Learning of Finite Scaled Dirichlet Mixture Models
    Nguyen, Hieu
    Kalra, Meeta
    Azam, Muhammad
    Bouguila, Nizar
    [J]. 2019 IEEE 20TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2019), 2019, : 267 - 274
  • [4] Finite mixture models for clustering multilevel data with multiple cluster structures
    Galimberti, Giuliano
    Soffritti, Gabriele
    [J]. STATISTICAL MODELLING, 2010, 10 (03) : 265 - 290
  • [5] Data Clustering Using Variational Learning of Finite Scaled Dirichlet Mixture Models with Component Splitting
    Hieu Nguyen
    Maanicshah, Kamal
    Azam, Muhammad
    Bouguila, Nizar
    [J]. IMAGE ANALYSIS AND RECOGNITION (ICIAR 2019), PT II, 2019, 11663 : 117 - 128
  • [6] Clustering of High-Dimensional Data via Finite Mixture Models
    McLachlan, Geoff J.
    Baek, Jangsun
    [J]. ADVANCES IN DATA ANALYSIS, DATA HANDLING AND BUSINESS INTELLIGENCE, 2010, : 33 - +
  • [7] Positive vectors clustering using inverted Dirichlet finite mixture models
    Bdiri, Taoufik
    Bouguila, Nizar
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (02) : 1869 - 1882
  • [8] Incremental mixture learning for clustering discrete data
    Blekas, K
    Likas, A
    [J]. METHODS AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 3025 : 210 - 219
  • [9] On determining efficient finite mixture models with compact and essential components for clustering data
    Abas, Ahmed R.
    [J]. EGYPTIAN INFORMATICS JOURNAL, 2013, 14 (01) : 79 - 88
  • [10] Online short text clustering using infinite extensions of discrete mixture models
    Hannachi, Samar
    Najar, Fatma
    Ennajari, Hafsa
    Bouguila, Nizar
    [J]. COMPUTATIONAL INTELLIGENCE, 2023, 39 (05) : 759 - 782