Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN

被引:30
|
作者
Zhang, Jiaan [1 ]
Liu, Chenyu [2 ]
Ge, Leijiao [3 ]
机构
[1] Hebei Univ Technol, State Key Lab Reliabil & Intelligence Elect Equip, Tianjin 300130, Peoples R China
[2] Hebei Univ Technol, Coll Artificial Intelligence & Data Sci, Tianjin 300401, Peoples R China
[3] Tianjin Univ, Key Lab Smart Grid, Minist Educ, Tianjin 300072, Peoples R China
关键词
electric vehicle; short-term load forecasting; convolutional neural network; temporal convolutional network; climate factors; correlation analysis; DEMAND;
D O I
10.3390/en15072633
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The large fluctuations in charging loads of electric vehicles (EVs) make short-term forecasting challenging. In order to improve the short-term load forecasting performance of EV charging load, a corresponding model-based multi-channel convolutional neural network and temporal convolutional network (MCCNN-TCN) are proposed. The multi-channel convolutional neural network (MCCNN) can extract the fluctuation characteristics of EV charging load at various time scales, while the temporal convolutional network (TCN) can build a time-series dependence between the fluctuation characteristics and the forecasted load. In addition, an additional BP network maps the selected meteorological and date features into a high-dimensional feature vector, which is spliced with the output of the TCN. According to experimental results employing urban charging station load data from a city in northern China, the proposed model is more accurate than artificial neural network (ANN), long short-term memory (LSTM), convolutional neural networks and long short-term memory (CNN-LSTM), and TCN models. The MCCNN-TCN model outperforms the ANN, LSTM, CNN-LSTM, and TCN by 14.09%, 25.13%, 27.32%, and 4.48%, respectively, in terms of the mean absolute percentage error.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] The short-term electric load forecasting grid model based on MDRBR algorithm
    Li, Ran
    Li, Jing Hua
    Li, He Ming
    2006 POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-9, 2006, : 2493 - +
  • [22] Short-Term Electric Power Load Forecasting Based on Goal Programming Model
    Zhang, Jie
    Xu, Lingmin
    Niu, Xinyu
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 4092 - 4095
  • [23] Short-term EV Charging Load Forecasting Based on GA-GRU Model
    Guo, Lei
    Shi, Peiran
    Zhang, Yong
    Cao, Zhengfeng
    Liu, Zhuping
    Feng, Bin
    2021 3RD ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM (AEEES 2021), 2021, : 679 - 683
  • [24] Ultra-Short-Term Load Forecasting of Electric Vehicle Charging Stations Based on Ensemble Learning
    Li H.
    Zhu J.
    Fu X.
    Fang C.
    Liang D.
    Zhou Y.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2022, 56 (08): : 1004 - 1013
  • [25] Short-term Load Forecasting Based on Load Profiling
    Ramos, Sergio
    Soares, Joao
    Vale, Zita
    Ramos, Sandra
    2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES), 2013,
  • [26] Short-Term Load Forecasting Based on the Transformer Model
    Zhao, Zezheng
    Xia, Chunqiu
    Chi, Lian
    Chang, Xiaomin
    Li, Wei
    Yang, Ting
    Zomaya, Albert Y.
    INFORMATION, 2021, 12 (12)
  • [27] Short-term load forecasting based on SV model
    Chen, Hao
    Wang, Yurong
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2010, 30 (11): : 86 - 89
  • [28] Short-Term Load Forecasting for Electric Vehicle Charging Station Based on Niche Immunity Lion Algorithm and Convolutional Neural Network
    Li, Yunyan
    Huang, Yuansheng
    Zhang, Meimei
    ENERGIES, 2018, 11 (05)
  • [29] A hybrid transfer learning model for short-term electric load forecasting
    Xu, Xianze
    Meng, Zhaorui
    ELECTRICAL ENGINEERING, 2020, 102 (03) : 1371 - 1381
  • [30] A hybrid transfer learning model for short-term electric load forecasting
    Xianze Xu
    Zhaorui Meng
    Electrical Engineering, 2020, 102 : 1371 - 1381