Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN

被引:30
|
作者
Zhang, Jiaan [1 ]
Liu, Chenyu [2 ]
Ge, Leijiao [3 ]
机构
[1] Hebei Univ Technol, State Key Lab Reliabil & Intelligence Elect Equip, Tianjin 300130, Peoples R China
[2] Hebei Univ Technol, Coll Artificial Intelligence & Data Sci, Tianjin 300401, Peoples R China
[3] Tianjin Univ, Key Lab Smart Grid, Minist Educ, Tianjin 300072, Peoples R China
关键词
electric vehicle; short-term load forecasting; convolutional neural network; temporal convolutional network; climate factors; correlation analysis; DEMAND;
D O I
10.3390/en15072633
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The large fluctuations in charging loads of electric vehicles (EVs) make short-term forecasting challenging. In order to improve the short-term load forecasting performance of EV charging load, a corresponding model-based multi-channel convolutional neural network and temporal convolutional network (MCCNN-TCN) are proposed. The multi-channel convolutional neural network (MCCNN) can extract the fluctuation characteristics of EV charging load at various time scales, while the temporal convolutional network (TCN) can build a time-series dependence between the fluctuation characteristics and the forecasted load. In addition, an additional BP network maps the selected meteorological and date features into a high-dimensional feature vector, which is spliced with the output of the TCN. According to experimental results employing urban charging station load data from a city in northern China, the proposed model is more accurate than artificial neural network (ANN), long short-term memory (LSTM), convolutional neural networks and long short-term memory (CNN-LSTM), and TCN models. The MCCNN-TCN model outperforms the ANN, LSTM, CNN-LSTM, and TCN by 14.09%, 25.13%, 27.32%, and 4.48%, respectively, in terms of the mean absolute percentage error.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] AN ACCURATE MODEL FOR SHORT-TERM LOAD FORECASTING
    ABOUHUSSIEN, MS
    KANDIL, MS
    TANTAWY, MA
    FARGHAL, SA
    IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1981, 100 (09): : 4158 - 4165
  • [42] Combination model for short-term load forecasting
    School of Information and Electromechanical Engineering, Shanghai Normal University, Shanghai, 0086/Shanghai, China
    Chen, Q. (hellowangchenchen@163.com), 1600, Bentham Science Publishers B.V., P.O. Box 294, Bussum, 1400 AG, Netherlands (05):
  • [43] Short-term Electric Load Forecasting Based on Wavelet Transform and GMDH
    Koo, Bon-Gil
    Lee, Heung-Seok
    Park, Juneho
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2015, 10 (03) : 832 - 837
  • [44] Short-term electric load forecasting based on a neural fuzzy network
    Ling, SH
    Leung, FHF
    Lam, HK
    Tam, PKS
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2003, 50 (06) : 1305 - 1316
  • [45] Short-Term Electric Load Forecasting Based on LS-SVMs
    Zhang, Fuwei
    Li, Yanbo
    ADVANCES IN FUTURE COMPUTER AND CONTROL SYSTEMS, VOL 2, 2012, 160 : 541 - +
  • [46] Research on the Short-term Electric Load Forecasting Based on Fuzzy Rules
    Liu, Tongna
    Zhang, Qian
    THIRD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING: WKDD 2010, PROCEEDINGS, 2010, : 179 - 181
  • [47] Short-term load prediction of electric vehicle charging stations based on conditional generative adversarial networks
    He, Wei
    Wang, Xiao
    Zhang, Yu
    Hua, Rui
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL TECHNOLOGY AND MANAGEMENT, 2025, 28 (1-3)
  • [48] Short-term load forecasting model based on Volterra filters
    Du, Jie
    Xu, Li-Zhong
    Cao, Yi-Jia
    Guo, Chuang-Xin
    Hou, Rong-Tao
    Xu, Xin
    Kongzhi yu Juece/Control and Decision, 2009, 24 (12): : 1903 - 1908
  • [49] Short-term load forecasting based on deep learning model
    Kim D.
    Jin-Jo H.
    Park J.-B.
    Roh J.H.
    Kim M.S.
    Transactions of the Korean Institute of Electrical Engineers, 2019, 68 (09): : 1094 - 1099
  • [50] Short-term load forecasting based on a multi-model
    Faller, C
    Dvorákova, R
    Horácek, P
    POWER PLANTS AND POWER SYSTEMS CONTROL 2000, 2000, : 107 - 112