A hybrid transfer learning model for short-term electric load forecasting

被引:0
|
作者
Xianze Xu
Zhaorui Meng
机构
[1] Wuhan University,Electronic Information School
来源
Electrical Engineering | 2020年 / 102卷
关键词
Load forecasting; Transfer learning; Time series decomposition; Transfer regression;
D O I
暂无
中图分类号
学科分类号
摘要
Transfer learning approach can be applied to electric load forecasting because electric load data from nearby locations are significantly correlated. However, ordinary transfer learning methods may bring negative transfer into load forecasting as time series prediction is not exactly the same as traditional data regression problem. Consequently, this paper proposes a novel hybrid transfer learning model based on time series decomposition. Firstly, trend and seasonal components are handled by standard machine learning approach so that seasonal cycles of electric load data can be interpreted better. Secondly, two-stage transfer regression model is established to forecast the irregular component in order to improve the forecasting accuracy. The negative transfer is successfully avoided, and the prediction accuracies are significantly improved because of time series decomposing and the additional information provided by the related dataset. The case study presented by two real-world power load datasets illustrates that the proposed approach can improve electric load prediction for a location by 30% at most by using additional data from another location.
引用
收藏
页码:1371 / 1381
页数:10
相关论文
共 50 条
  • [1] A hybrid transfer learning model for short-term electric load forecasting
    Xu, Xianze
    Meng, Zhaorui
    [J]. ELECTRICAL ENGINEERING, 2020, 102 (03) : 1371 - 1381
  • [2] A hybrid deep learning algorithm for short-term electric load forecasting
    Bulus, Kurtulus
    Zor, Kasim
    [J]. 29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [3] Short-Term Load Forecasting Based on a Hybrid Deep Learning Model
    Agana, Norbert A.
    Oleka, Emmanuel
    Awogbami, Gabriel
    Homaifar, Abdollah
    [J]. IEEE SOUTHEASTCON 2018, 2018,
  • [4] A short-term load forecasting model based on mixup and transfer learning
    Lu, Yuting
    Wang, Gaocai
    Huang, Shuqiang
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2022, 207
  • [5] Forecasting Short-Term Electric Load with a Hybrid of ARIMA Model and LSTM Network
    Pooniwala, Nevil
    Sutar, Rajendra
    [J]. 2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
  • [6] An Accurate Hybrid Approach for Electric Short-Term Load Forecasting
    Sina, Alireza
    Kaur, Damanjeet
    [J]. IETE JOURNAL OF RESEARCH, 2023, 69 (05) : 2727 - 2742
  • [7] Cooperative ensemble learning model improves electric short-term load forecasting
    Dal Molin Ribeiro, Matheus Henrique
    da Silva, Ramon Gomes
    Ribeiro, Gabriel Trierweiler
    Mariani, Viviana Cocco
    Coelho, Leandro dos Santos
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 166
  • [8] A Simple Hybrid Model for Short-Term Load Forecasting
    Annamareddi, Suseelatha
    Gopinathan, Sudheer
    Dora, Bharathi
    [J]. JOURNAL OF ENGINEERING, 2013, 2013
  • [9] Short-term Load forecasting by a new hybrid model
    Guo, Hehong
    Du, Guiqing
    Wu, Liping
    Hu, Zhiqiang
    [J]. PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON CLOUD COMPUTING AND INFORMATION SECURITY (CCIS 2013), 2013, 52 : 370 - 374
  • [10] A Hybrid Deep Learning Model with Evolutionary Algorithm for Short-Term Load Forecasting
    Al Mamun, Abdullah
    Hoq, Muntasir
    Hossain, Eklas
    Bayindir, Ramazan
    [J]. 2019 8TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA 2019), 2019, : 886 - 891