A Millimeter-Wave Reconfigurable On-Chip Coupler With Tunable Power-Dividing Ratios in 0.13-μm BiCMOS Technology

被引:21
|
作者
Yang, Yang [1 ]
Hou, Zhang Ju [2 ]
Zhu, Xi [1 ]
Che, Wenquan [3 ]
Xue, Quan [3 ]
机构
[1] Univ Technol Sydney, Tech Lab, Sch Elect & Data Engn, Ultimo, NSW 2007, Australia
[2] Sunway Commun, Shenzhen 518104, Peoples R China
[3] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Peoples R China
关键词
5G; millimeter-wave; on-chip tunable device; coupler; phase error; silicon-germanium (SiGe); (Bi) CMOS; power dividing ratio; PHASED-ARRAY RECEIVER; QUADRATURE COUPLER; SIGE BICMOS; BANDWIDTH;
D O I
10.1109/TCSI.2020.2964574
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a millimeter-wave (mm-wave) on-chip coupler with tunable power dividing ratios and constant phase response. Composed by two coupled lines, two capacitors and two series-connected varactors, the proposed tunable coupler offers broadband frequency responses for 5G applications. Theoretical analysis for wideband operation is provided. For demonstration, a millimeter-wave tunable coupler is implemented in a standard 0.13- SiGe (Bi) CMOS technology and measured through an on-wafer probing system. From 24 to 38 GHz, the proposed tunable coupler shows a power-dividing ratio ranged from 0 to 6.5 dB, while maintaining an in-band return loss of better than 10 dB and output isolation of 20 dB, simultaneously. The phase imbalance is better than +/- 2.5 degrees with a measured insertion loss of 1.3 dB across the entire tuning range. To the authors' best knowledge, this is the first time that an on-chip coupler with tunable power-dividing ratios is reported operating at mm-wave bands for, particularly, 5G applications.
引用
收藏
页码:1516 / 1526
页数:11
相关论文
共 50 条
  • [31] D-Band Transmitter/Receiver Chipset with End-Fire On-chip Antennas Using 0.13-μm SiGe BiCMOS Technology
    Chen, Chunhong
    Deng, Xiaodong
    Li, Yihu
    Wu, Wen
    Xiong, Yong-Zhong
    JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2020, 41 (03) : 322 - 339
  • [32] Cavity-backed on-chip patch antenna in 0.13 μm SiGe BiCMOS technology
    Xiao Jun
    Li Xiu-Ping
    Qi Zi-Hang
    Zhu Hua
    Feng Wei-Wei
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2019, 38 (03) : 310 - +
  • [33] D-Band Transmitter/Receiver Chipset with End-Fire On-chip Antennas Using 0.13-μm SiGe BiCMOS Technology
    Chunhong Chen
    Xiaodong Deng
    Yihu Li
    Wen Wu
    Yong-Zhong Xiong
    Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41 : 322 - 339
  • [34] Digital-Coding Metamaterials for On-Chip Beamsteering and Reconfigurable Millimeter-Wave Interconnects
    Shen, Zhicheng
    Taravati, Sajjad
    Yan, Jize
    IEEE ACCESS, 2024, 12 : 190775 - 190790
  • [35] Design of Ultra-wideband On-Chip Millimter-Wave Bandpass Filter in 0.13-μm (Bi)-CMOS Technology
    Sun, Feng
    Zhu, He
    Zhu, Xi
    Yang, Yang
    Sun, Yichuang
    Xue, Quan
    2019 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2019,
  • [36] A millimeter-wave wideband SPDT switch with traveling-wave concept using 0.13-μm CMOS process
    Yeh, MC
    Tsai, ZM
    Lin, KY
    Wang, H
    Su, CY
    Chao, CP
    2005 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM, VOLS 1-4, 2005, : 53 - 56
  • [37] Millimeter-wave wideband filtering on-chip antenna based on IPD technology
    Zeng, Yuyang
    Wu, Yongle
    Yang, Yuhao
    Li, Keyan
    Wang, Weimin
    ELECTROMAGNETICS, 2024, 44 (2-3) : 157 - 169
  • [38] A W-Band Balanced Power Amplifier Using Broadside Coupled Strip-Line Coupler in SiGe BiCMOS 0.13-μm Technology
    Hou, Zhang Ju
    Yang, Yang
    Chiu, Leung
    Zhu, Xi
    Dutkiewicz, Eryk
    Vardaxoglou, John C.
    Xue, Quan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2018, 65 (07) : 2139 - 2150
  • [39] A wideband on-chip millimeter-wave patch antenna in 0.18 μm CMOS
    孟祥雨
    池保勇
    贾海坤
    况立雪
    贾雯
    王志华
    Journal of Semiconductors, 2013, (10) : 148 - 152
  • [40] A wideband on-chip millimeter-wave patch antenna in 0.18 μm CMOS
    孟祥雨
    池保勇
    贾海坤
    况立雪
    贾雯
    王志华
    Journal of Semiconductors, 2013, 34 (10) : 148 - 152