The CHIMERE v2020r1 online chemistry-transport model

被引:44
|
作者
Menut, Laurent [1 ]
Bessagnet, Bertrand [1 ,8 ]
Briant, Regis [1 ]
Cholakian, Arineh [1 ]
Couvidat, Florian [2 ]
Mailler, Sylvain [1 ,3 ]
Pennel, Romain [1 ]
Siour, Guillaume [4 ,5 ]
Tuccella, Paolo [6 ,7 ]
Turquety, Solene [1 ]
Valari, Myrto [1 ]
机构
[1] Univ Paris Saclay, Lab Meteorol Dynam LMD, Ecole Polytech,CNRS, IPSL Res Univ,Ecole Normale Super,Sorbonne Univ,U, Route Saclay, Palaiseau, France
[2] INERIS, Natl Inst Ind Environm & Risks, Parc Technol ALATA, Verneuil En Halatte, France
[3] Univ Paris Est, Ecole Ponts, Champs Sur Marne, France
[4] Univ Paris Est Creteil, Lab Interuniv Syst Atmospher LISA, UMR CNRS 7583, Creteil, France
[5] Univ Paris, Inst Pierre Simon Laplace, Creteil, France
[6] Univ Aquila, TEMPS, Dept Phys & Chem Sci, Laquila, Italy
[7] Univ Aquila, Ctr Excellence Telesening Environm & Model Predic, Laquila, Italy
[8] European Commiss, Joint Res Ctr JRC, Ispra, Italy
关键词
SECONDARY ORGANIC AEROSOL; LOW-VOLATILITY SOA; MINERAL AEROSOL; ACTIVITY-COEFFICIENTS; THERMODYNAMIC MODEL; MEDITERRANEAN AREA; DUST EMISSIONS; DRY DEPOSITION; GAS-EXCHANGE; WIND-SPEED;
D O I
10.5194/gmd-14-6781-2021
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The CHIMERE chemistry-transport model v2020r1 replaces the v2017r5 version and provides numerous novelties. The most important of these is the online coupling with the Weather Research and Forecasting (WRF) meteorological model via the OASIS3 - Model Coupling Toolkit (MCT) external coupler. The model can still be used in offline mode; the online mode enables us to take into account the direct and indirect effects of aerosols on meteorology. This coupling also enables using the meteorological parameters with sub-hourly time steps. Some new parameterizations are implemented to increase the model performance and the user's choices: dimethyl sulfide (DMS) emissions, additional schemes for secondary organic aerosol (SOA) formation with volatility basis set (VBS) and H2O, improved schemes for mineral dust, biomass burning, and sea-salt emissions. The NO x emissions from lightning are added. The model also includes the possibility to use the operator-splitting integration technique. The subgrid-scale variability calculation of concentrations due to emission activity sectors is now possible. Finally, a new vertical advection scheme has been implemented, which is able to simulate more correctly long-range transport of thin pollutant plumes.
引用
收藏
页码:6781 / 6811
页数:31
相关论文
共 50 条
  • [41] Chemical ozone loss in the tropopause region on subvisible ice clouds, calculated with a chemistry-transport model
    Bregman, B
    Wang, PH
    Lelieveld, J
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D3)
  • [42] An Evaluation of the CHIMERE Chemistry Transport Model to Simulate Dust Outbreaks across the Northern Hemisphere in March 2014
    Bessagnet, Bertrand
    Menut, Laurent
    Colette, Augustin
    Couvidat, Florian
    Dan, Mo
    Mailler, Sylvain
    Letinois, Laurent
    Pont, Veronique
    Rouil, Laurence
    ATMOSPHERE, 2017, 8 (12)
  • [43] Improvement of the vertical humidity distribution in the chemistry-transport model MATCH through increased evaporation of convective precipitation
    Lang, R
    Lawrence, MG
    GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (17) : 1 - 4
  • [44] Tropospheric column ozone: matching individual profiles from Aura OMI and TES with a chemistry-transport model
    Tang, Q.
    Prather, M. J.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (21) : 10441 - 10452
  • [45] Development and evaluation of the unified tropospheric-stratospheric chemistry extension (UCX) for the global chemistry-transport model GEOS-Chem
    Eastham, Sebastian D.
    Weisenstein, Debra K.
    Barrett, Steven R. H.
    ATMOSPHERIC ENVIRONMENT, 2014, 89 : 52 - 63
  • [46] Assimilation of GOME ozone profiles and a global chemistry-transport model using a Kalman filter with anisotropic covariance
    Segers, AJ
    Eskes, HJ
    Van der A, RJ
    Van Oss, F
    Van Velthoven, PFJ
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (606) : 477 - 502
  • [47] The parallel model system LM-MUSCAT for chemistry-transport simulations:: Coupling scheme, parallelization and applications
    Wolke, R
    Knoth, O
    Hellmuth, O
    Schröder, W
    Renner, E
    PARALLEL COMPUTING: SOFTWARE TECHNOLOGY, ALGORITHMS, ARCHITECTURES AND APPLICATIONS, 2004, 13 : 363 - 369
  • [48] A chemistry-transport model simulation of middle atmospheric ozone from 1980 to 2019 using coupled chemistry GCM winds and temperatures
    Damski, J.
    Thoelix, L.
    Backman, L.
    Kaurola, J.
    Taalas, P.
    Austin, J.
    Butchart, N.
    Kulmala, M.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (09) : 2165 - 2181
  • [49] Parameterization of the convective transport in a two-dimensional chemistry-transport model and its validation with radon 222 and other tracer simulations
    Dvortsov, VL
    Geller, MA
    Yudin, VA
    Smyshlyaev, SP
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D17) : 22047 - 22062
  • [50] The two-way nested global chemistry-transport zoom model TM5: algorithm and applications
    Krol, M
    Houweling, S
    Bregman, B
    van den Broek, M
    Segers, A
    van Velthoven, P
    Peters, W
    Dentener, F
    Bergamaschi, P
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 : 417 - 432