The CHIMERE v2020r1 online chemistry-transport model

被引:44
|
作者
Menut, Laurent [1 ]
Bessagnet, Bertrand [1 ,8 ]
Briant, Regis [1 ]
Cholakian, Arineh [1 ]
Couvidat, Florian [2 ]
Mailler, Sylvain [1 ,3 ]
Pennel, Romain [1 ]
Siour, Guillaume [4 ,5 ]
Tuccella, Paolo [6 ,7 ]
Turquety, Solene [1 ]
Valari, Myrto [1 ]
机构
[1] Univ Paris Saclay, Lab Meteorol Dynam LMD, Ecole Polytech,CNRS, IPSL Res Univ,Ecole Normale Super,Sorbonne Univ,U, Route Saclay, Palaiseau, France
[2] INERIS, Natl Inst Ind Environm & Risks, Parc Technol ALATA, Verneuil En Halatte, France
[3] Univ Paris Est, Ecole Ponts, Champs Sur Marne, France
[4] Univ Paris Est Creteil, Lab Interuniv Syst Atmospher LISA, UMR CNRS 7583, Creteil, France
[5] Univ Paris, Inst Pierre Simon Laplace, Creteil, France
[6] Univ Aquila, TEMPS, Dept Phys & Chem Sci, Laquila, Italy
[7] Univ Aquila, Ctr Excellence Telesening Environm & Model Predic, Laquila, Italy
[8] European Commiss, Joint Res Ctr JRC, Ispra, Italy
关键词
SECONDARY ORGANIC AEROSOL; LOW-VOLATILITY SOA; MINERAL AEROSOL; ACTIVITY-COEFFICIENTS; THERMODYNAMIC MODEL; MEDITERRANEAN AREA; DUST EMISSIONS; DRY DEPOSITION; GAS-EXCHANGE; WIND-SPEED;
D O I
10.5194/gmd-14-6781-2021
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The CHIMERE chemistry-transport model v2020r1 replaces the v2017r5 version and provides numerous novelties. The most important of these is the online coupling with the Weather Research and Forecasting (WRF) meteorological model via the OASIS3 - Model Coupling Toolkit (MCT) external coupler. The model can still be used in offline mode; the online mode enables us to take into account the direct and indirect effects of aerosols on meteorology. This coupling also enables using the meteorological parameters with sub-hourly time steps. Some new parameterizations are implemented to increase the model performance and the user's choices: dimethyl sulfide (DMS) emissions, additional schemes for secondary organic aerosol (SOA) formation with volatility basis set (VBS) and H2O, improved schemes for mineral dust, biomass burning, and sea-salt emissions. The NO x emissions from lightning are added. The model also includes the possibility to use the operator-splitting integration technique. The subgrid-scale variability calculation of concentrations due to emission activity sectors is now possible. Finally, a new vertical advection scheme has been implemented, which is able to simulate more correctly long-range transport of thin pollutant plumes.
引用
收藏
页码:6781 / 6811
页数:31
相关论文
共 50 条
  • [31] New strategies for vertical transport in chemistry transport models: application to the case of the Mount Etna eruption on 18 March 2012 with CHIMERE v2017r4
    Lachatre, Mathieu
    Mailler, Sylvain
    Menut, Laurent
    Turquety, Solene
    Sellitto, Pasquale
    Guermazi, Henda
    Salerno, Giuseppe
    Caltabiano, Tommaso
    Carboni, Elisa
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (11) : 5707 - 5723
  • [32] Ensemble Data Assimilation for Tropospheric Ozone Analysis Within the CHIMERE Regional Chemistry Transport Model
    Gaubert, Benjamin
    Coman, Adriana
    Foret, Gilles
    Beekmann, Matthias
    Eremenko, Maxim
    Dufour, Gaelle
    Zyryanov, Denis
    Ung, Anthony
    Bergametti, Gilles
    Flaud, Jean-Marie
    AIR POLLUTION MODELING AND ITS APPLICATION XXII, 2014, : 227 - 231
  • [33] On the formation of biogenic secondary organic aerosol in chemical transport models: an evaluation of the WRF-CHIMERE (v2020r2) model with a focus over the Finnish boreal forest
    Ciarelli, Giancarlo
    Tahvonen, Sara
    Cholakian, Arineh
    Bettineschi, Manuel
    Vitali, Bruno
    Petaja, Tuukka
    Bianchi, Federico
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2024, 17 (02) : 545 - 565
  • [34] A comprehensive study of ozone sensitivity with respect to emissions over Europe with a chemistry-transport model
    Mallet, V
    Sportisse, B
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D22) : 1 - 15
  • [35] Assimilation of MIPAS observations using a three-dimensional global chemistry-transport model
    Baier, F.
    Erbertseder, T.
    Morgenstern, O.
    Bittner, M.
    Brasseur, G.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (613) : 3529 - 3542
  • [36] High-resolution air quality simulation over Europe with the chemistry transport model CHIMERE
    Terrenoire, E.
    Bessagnet, B.
    Rouil, L.
    Tognet, F.
    Pirovano, G.
    Letinois, L.
    Beauchamp, M.
    Colette, A.
    Thunis, P.
    Amann, M.
    Menut, L.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2015, 8 (01) : 21 - 42
  • [37] MSDOL project: assimilation of Gomos Ozone data in a 3-D chemistry-transport model
    Bertaux, J.L.
    Hauchecorne, A.
    Mangin, A.
    Cot, C.
    Talagrand, O.
    Simon, P.
    Kyrola, E.
    Roscoe, H.
    Hembise, O.
    Brasseur, G.P.
    Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 24 (05): : 435 - 437
  • [38] The MSDOL project:: Assimilation of Gomos Ozone Data in a 3-D chemistry-transport model
    Bertaux, JL
    Hauchecorne, A
    Mangin, A
    Cot, C
    Talagrand, O
    Simon, P
    Kyrölä, E
    Roscoe, H
    Hembise, O
    Brasseur, GP
    PHYSICS AND CHEMISTRY OF THE EARTH PART C-SOLAR-TERRESTIAL AND PLANETARY SCIENCE, 1999, 24 (05): : 435 - 437
  • [39] MONITORING VOLCANIC ASH WITH THE CHEMISTRY-TRANSPORT MODEL MOCAGE: IMPROVEMENTS OF SOURCE TERM AND ASSIMILATION OF OBSERVATIONS
    Bigeard, G.
    Sic, B.
    El Amraoui, L.
    Plu, M.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 7829 - 7832
  • [40] Assimilation of carbon monoxide measured from satellite in a three-dimensional chemistry-transport model
    Clerbaux, C
    Hadji-Lazaro, J
    Hauglustaine, D
    Mégie, G
    Khattatov, B
    Lamarque, JF
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D14): : 15385 - 15394