The CHIMERE v2020r1 online chemistry-transport model

被引:44
|
作者
Menut, Laurent [1 ]
Bessagnet, Bertrand [1 ,8 ]
Briant, Regis [1 ]
Cholakian, Arineh [1 ]
Couvidat, Florian [2 ]
Mailler, Sylvain [1 ,3 ]
Pennel, Romain [1 ]
Siour, Guillaume [4 ,5 ]
Tuccella, Paolo [6 ,7 ]
Turquety, Solene [1 ]
Valari, Myrto [1 ]
机构
[1] Univ Paris Saclay, Lab Meteorol Dynam LMD, Ecole Polytech,CNRS, IPSL Res Univ,Ecole Normale Super,Sorbonne Univ,U, Route Saclay, Palaiseau, France
[2] INERIS, Natl Inst Ind Environm & Risks, Parc Technol ALATA, Verneuil En Halatte, France
[3] Univ Paris Est, Ecole Ponts, Champs Sur Marne, France
[4] Univ Paris Est Creteil, Lab Interuniv Syst Atmospher LISA, UMR CNRS 7583, Creteil, France
[5] Univ Paris, Inst Pierre Simon Laplace, Creteil, France
[6] Univ Aquila, TEMPS, Dept Phys & Chem Sci, Laquila, Italy
[7] Univ Aquila, Ctr Excellence Telesening Environm & Model Predic, Laquila, Italy
[8] European Commiss, Joint Res Ctr JRC, Ispra, Italy
关键词
SECONDARY ORGANIC AEROSOL; LOW-VOLATILITY SOA; MINERAL AEROSOL; ACTIVITY-COEFFICIENTS; THERMODYNAMIC MODEL; MEDITERRANEAN AREA; DUST EMISSIONS; DRY DEPOSITION; GAS-EXCHANGE; WIND-SPEED;
D O I
10.5194/gmd-14-6781-2021
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The CHIMERE chemistry-transport model v2020r1 replaces the v2017r5 version and provides numerous novelties. The most important of these is the online coupling with the Weather Research and Forecasting (WRF) meteorological model via the OASIS3 - Model Coupling Toolkit (MCT) external coupler. The model can still be used in offline mode; the online mode enables us to take into account the direct and indirect effects of aerosols on meteorology. This coupling also enables using the meteorological parameters with sub-hourly time steps. Some new parameterizations are implemented to increase the model performance and the user's choices: dimethyl sulfide (DMS) emissions, additional schemes for secondary organic aerosol (SOA) formation with volatility basis set (VBS) and H2O, improved schemes for mineral dust, biomass burning, and sea-salt emissions. The NO x emissions from lightning are added. The model also includes the possibility to use the operator-splitting integration technique. The subgrid-scale variability calculation of concentrations due to emission activity sectors is now possible. Finally, a new vertical advection scheme has been implemented, which is able to simulate more correctly long-range transport of thin pollutant plumes.
引用
收藏
页码:6781 / 6811
页数:31
相关论文
共 50 条
  • [21] Intercomparison of multiple two-way coupled meteorology and air quality models (WRF v4.1.1-CMAQ v5.3.1, WRF-Chem v4.1.1, and WRF v3.7.1-CHIMERE v2020r1) in eastern China
    Gao, Chao
    Zhang, Xuelei
    Xiu, Aijun
    Tong, Qingqing
    Zhao, Hongmei
    Zhang, Shichun
    Yang, Guangyi
    Zhang, Mengduo
    Xie, Shengjin
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2024, 17 (06) : 2471 - 2492
  • [22] Simulation of production and transport of photo-oxidants in a larger alpine valley with a chemistry-transport model
    Emeis, S
    Schoenemeyer, T
    ICAM 96 - PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON ALPINE METEOROLOGY 1996, 1996, : 336 - 336
  • [23] Statistical diagnostic and correction of a chemistry-transport model for the prediction of total column ozone
    Guillas, S
    Tiao, GC
    Wuebbles, DJ
    Zubrow, A
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 : 525 - 537
  • [24] Error apportionment for atmospheric chemistry-transport models - a new approach to model evaluation
    Solazzo, Efisio
    Galmarini, Stefano
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (10) : 6263 - 6283
  • [25] Transport diagnostics of GCMs and implications for 2D chemistry-transport model of troposphere and stratosphere
    Yudin, VA
    Smyshlyaev, SP
    Geller, MA
    Dvortsov, VL
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2000, 57 (05) : 673 - 699
  • [26] Sensitivity of chemistry-transport model simulations to the duration of chemical and transport operators: a case study with GEOS-Chem v10-01
    Philip, Sajeev
    Martin, Randall V.
    Keller, Christoph A.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (05) : 1683 - 1695
  • [27] Modeling the concentration of pollutants using the WRF-ARW atmospheric model and CHIMERE chemistry transport model
    R. B. Zaripov
    I. B. Konovalov
    A. A. Glazkova
    Russian Meteorology and Hydrology, 2013, 38 : 828 - 839
  • [28] Investigation of some numerical issues in a chemistry-transport model:: Gas-phase simulations
    Mallet, Vivien
    Purchet, Adelaide
    Quelo, Denis
    Sportisse, Bruno
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D15)
  • [29] Comparing mesoscale chemistry-transport model and remote-sensed Aerosol Optical Depth
    Carnevale, C.
    Finzi, G.
    Mannarini, G.
    Pisoni, E.
    Volta, M.
    ATMOSPHERIC ENVIRONMENT, 2011, 45 (02) : 289 - 295
  • [30] Modeling the concentration of pollutants using the WRF-ARW atmospheric model and CHIMERE chemistry transport model
    Zaripov, R. B.
    Konovalov, I. B.
    Glazkova, A. A.
    RUSSIAN METEOROLOGY AND HYDROLOGY, 2013, 38 (12) : 828 - 839