Function-on-function regression for two-dimensional functional data

被引:5
|
作者
Ivanescu, Andrada E. [1 ]
机构
[1] Montclair State Univ, Dept Math Sci, Montclair, NJ 07043 USA
关键词
Bivariate; Functional data analysis; Functional regression; Penalized splines; Smoothing; SELECTION;
D O I
10.1080/03610918.2017.1353619
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present methods for modeling and estimation of a concurrent functional regression when the predictors and responses are two-dimensional functional datasets. The implementations use spline basis functions and model fitting is based on smoothing penalties and mixed model estimation. The proposed methods are implemented in available statistical software, allow the construction of confidence intervals for the bivariate model parameters, and can be applied to completely or sparsely sampled responses. Methods are tested to data in simulations and they show favorable results in practice. The usefulness of the methods is illustrated in an application to environmental data.
引用
收藏
页码:2656 / 2669
页数:14
相关论文
共 50 条
  • [31] On function-on-function regression: partial least squares approach
    Beyaztas, Ufuk
    Shang, Han Lin
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2020, 27 (01) : 95 - 114
  • [32] VARIABLE SELECTION FOR MULTIPLE FUNCTION-ON-FUNCTION LINEAR REGRESSION
    Cai, Xiong
    Xue, Liugen
    Cao, Jiguo
    [J]. STATISTICA SINICA, 2022, 32 (03) : 1435 - 1465
  • [33] Interaction Model and Model Selection for Function-on-Function Regression
    Luo, Ruiyan
    Qi, Xin
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (02) : 309 - 322
  • [34] Function-on-Function Regression with Mode-Sparsity Regularization
    Yang, Pei
    Tan, Qi
    He, Jingrui
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2018, 12 (03)
  • [35] On function-on-function regression: partial least squares approach
    Ufuk Beyaztas
    Han Lin Shang
    [J]. Environmental and Ecological Statistics, 2020, 27 : 95 - 114
  • [36] COVID-19 Data Imputation by Multiple Function-on-Function Principal Component Regression
    Acal, Christian
    Escabias, Manuel
    Aguilera, Ana M.
    Valderrama, Mariano J.
    [J]. MATHEMATICS, 2021, 9 (11)
  • [37] Estimation and Model Selection for Non parametric Function-on-Function Regression
    Wang, Zhanfeng
    Dong, Hao
    Ma, Ping
    Wang, Yuedong
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (03) : 835 - 845
  • [38] A partial least squares approach for function-on-function interaction regression
    Ufuk Beyaztas
    Han Lin Shang
    [J]. Computational Statistics, 2021, 36 : 911 - 939
  • [39] A robust partial least squares approach for function-on-function regression
    Beyaztas, Ufuk
    Shang, Han Lin
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2022, 36 (02) : 199 - 219
  • [40] Smooth LASSO estimator for the Function-on-Function linear regression model
    Centofanti, Fabio
    Fontana, Matteo
    Lepore, Antonio
    Vantini, Simone
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 176