Function-on-function regression for two-dimensional functional data

被引:5
|
作者
Ivanescu, Andrada E. [1 ]
机构
[1] Montclair State Univ, Dept Math Sci, Montclair, NJ 07043 USA
关键词
Bivariate; Functional data analysis; Functional regression; Penalized splines; Smoothing; SELECTION;
D O I
10.1080/03610918.2017.1353619
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present methods for modeling and estimation of a concurrent functional regression when the predictors and responses are two-dimensional functional datasets. The implementations use spline basis functions and model fitting is based on smoothing penalties and mixed model estimation. The proposed methods are implemented in available statistical software, allow the construction of confidence intervals for the bivariate model parameters, and can be applied to completely or sparsely sampled responses. Methods are tested to data in simulations and they show favorable results in practice. The usefulness of the methods is illustrated in an application to environmental data.
引用
收藏
页码:2656 / 2669
页数:14
相关论文
共 50 条
  • [21] Statistical inference for function-on-function linear regression
    Dette, Holger
    Tang, Jiajun
    [J]. BERNOULLI, 2024, 30 (01) : 304 - 331
  • [22] Functional Fuzzy System: A Nonlinear Regression Model and Its Learning Algorithm for Function-on-Function Regression
    Ge, Dongjiao
    Zeng, Xiao-Jun
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (04) : 956 - 967
  • [23] A comparison of parameter estimation in function-on-function regression
    Beyaztas, Ufuk
    Shang, Han Lin
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (08) : 4607 - 4637
  • [24] Function-on-function regression with thousands of predictive curves
    Qi, Xin
    Luo, Ruiyan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 163 : 51 - 66
  • [25] Restricted function-on-function linear regression model
    Luo, Ruiyan
    Qi, Xin
    [J]. BIOMETRICS, 2022, 78 (03) : 1031 - 1044
  • [26] Envelope Model for Function-on-Function Linear Regression
    Su, Zhihua
    Li, Bing
    Cook, Dennis
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1624 - 1635
  • [27] Function-on-Function Linear Regression by Signal Compression
    Luo, Ruiyan
    Qi, Xin
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) : 690 - 705
  • [28] A Non-linear Function-on-Function Model for Regression with Time Series Data
    Wang, Qiyao
    Wang, Haiyan
    Gupta, Chetan
    Rao, Aniruddha Rajendra
    Khorasgani, Hamed
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 232 - 239
  • [29] Modern non-linear function-on-function regression
    Rao, Aniruddha Rajendra
    Reimherr, Matthew
    [J]. STATISTICS AND COMPUTING, 2023, 33 (06)
  • [30] VARIABLE SELECTION FOR MULTIPLE FUNCTION-ON-FUNCTION LINEAR REGRESSION
    Cai, Xiong
    Xue, Liugen
    Cao, Jiguo
    [J]. STATISTICA SINICA, 2022, 32 (03) : 1435 - 1465