A PERIODIC REACTION-DIFFUSION MODEL WITH A QUIESCENT STAGE

被引:6
|
作者
Wang, Feng-Bin [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Math, Hsinchu 300, Taiwan
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2012年 / 17卷 / 01期
关键词
Monotone systems; Spreading speeds; Periodic traveling waves; periodic coexistence state; SPREADING SPEEDS; TRAVELING-WAVES; BEHAVIOR;
D O I
10.3934/dcdsb.2012.17.283
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the asymptotic behaviour for a periodic reaction-diffusion model with a quiescent stage. By appealing to the theory of asymptotic speeds of spread and traveling waves for monotone periodic semiflow, we establish the existence of the spreading speed and show that it coincides with the minimal wave speed for monotone periodic traveling waves. Finally, we consider the case where the spatial domain is bounded. A threshold result on the global attractivity of either zero or a positive periodic solution are established.
引用
收藏
页码:283 / 295
页数:13
相关论文
共 50 条
  • [41] Blocking and invasion for reaction-diffusion equations in periodic media
    Ducasse, Romain
    Rossi, Luca
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (05)
  • [42] Transition fronts for periodic bistable reaction-diffusion equations
    Weiwei Ding
    François Hamel
    Xiao-Qiang Zhao
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 2517 - 2551
  • [43] STABLE SUBHARMONIC SOLUTIONS IN PERIODIC REACTION-DIFFUSION EQUATIONS
    DANCER, EN
    HESS, P
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 108 (01) : 190 - 200
  • [44] Periodic solutions in reaction-diffusion equations with time delay
    Li, Li
    CHAOS SOLITONS & FRACTALS, 2015, 78 : 10 - 15
  • [45] Transition fronts for periodic bistable reaction-diffusion equations
    Ding, Weiwei
    Hamel, Francois
    Zhao, Xiao-Qiang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) : 2517 - 2551
  • [46] PROPAGATION PROPERTIES OF REACTION-DIFFUSION EQUATIONS IN PERIODIC DOMAINS
    Ducasse, Romain
    ANALYSIS & PDE, 2020, 13 (08): : 2259 - 2288
  • [47] PERIODIC-SOLUTIONS TO SYSTEMS OF REACTION-DIFFUSION EQUATIONS
    ROSEN, G
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1976, 301 (03): : 307 - 312
  • [48] Cross-diffusion induced Turing instability of Hopf bifurcating periodic solutions in the reaction-diffusion enzyme reaction model
    Liu, Haicheng
    Yuan, Wenshuo
    Ge, Bin
    Shen, Jihong
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024, 17 (04)
  • [49] Reaction-Diffusion Problems on Time-Periodic Domains
    Allwright, Jane
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 37 (1) : 71 - 94
  • [50] THE PRINCIPAL EIGENVALUE FOR DEGENERATE PERIODIC REACTION-DIFFUSION SYSTEMS
    Liang, Xing
    Zhang, Lei
    Zhao, Xiao-Qiang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (05) : 3603 - 3636