A PERIODIC REACTION-DIFFUSION MODEL WITH A QUIESCENT STAGE

被引:6
|
作者
Wang, Feng-Bin [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Math, Hsinchu 300, Taiwan
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2012年 / 17卷 / 01期
关键词
Monotone systems; Spreading speeds; Periodic traveling waves; periodic coexistence state; SPREADING SPEEDS; TRAVELING-WAVES; BEHAVIOR;
D O I
10.3934/dcdsb.2012.17.283
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the asymptotic behaviour for a periodic reaction-diffusion model with a quiescent stage. By appealing to the theory of asymptotic speeds of spread and traveling waves for monotone periodic semiflow, we establish the existence of the spreading speed and show that it coincides with the minimal wave speed for monotone periodic traveling waves. Finally, we consider the case where the spatial domain is bounded. A threshold result on the global attractivity of either zero or a positive periodic solution are established.
引用
收藏
页码:283 / 295
页数:13
相关论文
共 50 条
  • [31] Oscillations Induced by Quiescent Adult Female in a Reaction-Diffusion Model of Wild Aedes Aegypti Mosquitoes
    Aghriche, A.
    Yafia, R.
    Alaoui, M. A. Aziz
    Tridane, A.
    Rihan, F. A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (13):
  • [32] GLOBAL DYNAMICS OF A REACTION-DIFFUSION SEIVQR EPIDEMIC MODEL IN ALMOST PERIODIC ENVIRONMENTS
    Xing, Yifan
    Li, Hong-Xu
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (02): : 762 - 785
  • [33] Dynamic analysis of a malaria reaction-diffusion model with periodic delays and vector bias
    Zhao, Hongyong
    Shi, Yangyang
    Zhang, Xuebing
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (03) : 2538 - 2574
  • [34] Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period
    Zhang, Liang
    Wang, Zhi-Cheng
    Zhao, Xiao-Qiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (09) : 3011 - 3036
  • [35] Periodic traveling waves in a reaction-diffusion model with chemotaxis and nonlocal delay effect
    Li, Dong
    Guo, Shangjiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 467 (02) : 1080 - 1099
  • [36] A reaction-diffusion model with nonlinearity driven diffusion
    Man-jun Ma
    Jia-jia Hu
    Jun-jie Zhang
    Ji-cheng Tao
    Applied Mathematics-A Journal of Chinese Universities, 2013, 28 : 290 - 302
  • [37] A reaction-diffusion model with nonlinearity driven diffusion
    Ma Man-jun
    Hu Jia-jia
    Zhang Jun-jie
    Tao Ji-cheng
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (03) : 290 - 302
  • [38] Periodic solutions of a three-species periodic reaction-diffusion system
    Qiao, Tiantian
    Sun, Jiebao
    Wu, Boying
    ANNALES POLONICI MATHEMATICI, 2011, 100 (02) : 179 - 191
  • [39] THE EXISTENCE OF PERIODIC-SOLUTIONS TO REACTION-DIFFUSION SYSTEMS WITH PERIODIC DATA
    MORGAN, JJ
    HOLLIS, SL
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1995, 26 (05) : 1225 - 1232
  • [40] The evolution of fast reaction:: a reaction-diffusion model
    Büger, M
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2002, 3 (04) : 543 - 554