A PERIODIC REACTION-DIFFUSION MODEL WITH A QUIESCENT STAGE

被引:6
|
作者
Wang, Feng-Bin [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Math, Hsinchu 300, Taiwan
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2012年 / 17卷 / 01期
关键词
Monotone systems; Spreading speeds; Periodic traveling waves; periodic coexistence state; SPREADING SPEEDS; TRAVELING-WAVES; BEHAVIOR;
D O I
10.3934/dcdsb.2012.17.283
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the asymptotic behaviour for a periodic reaction-diffusion model with a quiescent stage. By appealing to the theory of asymptotic speeds of spread and traveling waves for monotone periodic semiflow, we establish the existence of the spreading speed and show that it coincides with the minimal wave speed for monotone periodic traveling waves. Finally, we consider the case where the spatial domain is bounded. A threshold result on the global attractivity of either zero or a positive periodic solution are established.
引用
收藏
页码:283 / 295
页数:13
相关论文
共 50 条
  • [21] Stability of bifurcating periodic solutions in a delayed reaction-diffusion population model
    Yan, Xiang-Ping
    Li, Wan-Tong
    NONLINEARITY, 2010, 23 (06) : 1413 - 1431
  • [22] PERIODIC-SOLUTIONS TO REACTION-DIFFUSION EQUATIONS
    GREENBERG, JM
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 30 (02) : 199 - 205
  • [23] REACTION-DIFFUSION MODEL FOR A+A REACTION
    LINDENBERG, K
    ARGYRAKIS, P
    KOPELMAN, R
    JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (19): : 7542 - 7556
  • [24] On Periodic Solutions of a Nonlinear Reaction-Diffusion System
    Kosov, A. A.
    Semenov, E., I
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2018, 26 : 35 - 46
  • [25] PERSISTENCE AND PROPAGATION IN PERIODIC REACTION-DIFFUSION MODELS
    Hamel, Francois
    Roques, Lionel
    TAMKANG JOURNAL OF MATHEMATICS, 2014, 45 (03): : 217 - 228
  • [26] A reaction-diffusion system with periodic front dynamics
    Medvedev, GS
    Kaper, TJ
    Kopell, N
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (05) : 1601 - 1638
  • [27] Convergence to periodic solutions in periodic quasimonotone reaction-diffusion systems
    Wang, Y
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 268 (01) : 25 - 40
  • [28] Propagation dynamics for a time-periodic reaction-diffusion SI epidemic model with periodic recruitment
    Zhao, Lin
    Wang, Zhi-Cheng
    Zhang, Liang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04):
  • [29] REACTION-DIFFUSION MODEL FOR PHYLLOTAXIS
    BERNASCONI, GP
    PHYSICA D, 1994, 70 (1-2): : 90 - 99
  • [30] A STOCHASTIC REACTION-DIFFUSION MODEL
    KOTELENEZ, P
    LECTURE NOTES IN MATHEMATICS, 1989, 1390 : 132 - 137