C1 smoothness of Liouville arcs in Arnol'd tongues

被引:0
|
作者
Slammert, L [1 ]
机构
[1] Univ Western Cape, Dept Math & Appl Math, ZA-7535 Bellville, South Africa
关键词
D O I
10.1090/S0002-9939-01-06043-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the generic two parameter family of C-r circle diffeomorphisms of a general form we prove that the bifurcation arcs which correspond to Liouville irrational rotation numbers are C-1 smooth. As a consequence, we give an explicit formula for the derivative of all non-resonance arcs. Results of Arnol'd, Herman, and others give greater smoothness for a more restricted class of rotation numbers using KAM techniques.
引用
收藏
页码:1817 / 1823
页数:7
相关论文
共 50 条
  • [1] A C1 ARNOL'D-LIOUVILLE THEOREM
    Arnaud, Marie-Claude
    Xue, Jinxin
    [J]. ASTERISQUE, 2020, (416) : 1 - 31
  • [2] On the widths of the Arnol'd tongues
    Banerjee, Kuntal
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 1451 - 1463
  • [3] Arnol'd tongues and quantum accelerator modes
    Guarneri, Italo
    Rebuzzini, Laura
    Fishman, Shmuel
    [J]. NONLINEARITY, 2006, 19 (05) : 1141 - 1164
  • [4] Complex Arnol'd - Liouville Maps
    Biasco, Luca
    Chierchia, Luigi
    [J]. REGULAR & CHAOTIC DYNAMICS, 2023, 28 (04): : 395 - 424
  • [5] Complex Arnol’d – Liouville Maps
    Luca Biasco
    Luigi Chierchia
    [J]. Regular and Chaotic Dynamics, 2023, 28 : 395 - 424
  • [6] Generalized Arnol'd tongues for twist maps of the annulus
    Crovisier, S
    [J]. COMPTES RENDUS MATHEMATIQUE, 2002, 334 (01) : 47 - 52
  • [7] C1 Smoothness of Steiner Symmetrizations
    YE Qiaoqing
    LIN Youjiang
    [J]. Wuhan University Journal of Natural Sciences, 2021, 26 (04) : 295 - 298
  • [8] Complete integrability beyond Liouville-Arnol'd
    Bates, L
    Cushman, R
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2005, 56 (01) : 77 - 91
  • [9] Weak Liouville-Arnol'd Theorems and Their Implications
    Butler, Leo T.
    Sorrentino, Alfonso
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 315 (01) : 109 - 133
  • [10] Weak Liouville-Arnol′d Theorems and Their Implications
    Leo T. Butler
    Alfonso Sorrentino
    [J]. Communications in Mathematical Physics, 2012, 315 : 109 - 133