A C1 ARNOL'D-LIOUVILLE THEOREM

被引:3
|
作者
Arnaud, Marie-Claude [1 ]
Xue, Jinxin [2 ,3 ]
机构
[1] Univ Paris, Sorbonne Univ, CNRS, Inst Math Jussieu Paris Rive Gauche, F-75013 Paris, France
[2] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
关键词
(C-0-)Poisson commutativity; Hamiltonian; Arnol'd- Liouville theorem; foliation; Lagrangian submanifolds; generating functions; symplectic homeomorphisms; complete integrability; REGULARITY;
D O I
10.24033/ast.1109
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove a version of Arnol'd-Liouville theorem for C-2 Hamiltonians having enough C-1 commuting Hamiltonians. We show that the Lipschitz regularity of the foliation by invariant Lagrangian tori is crucial to determine the Dynamics on each Lagrangian torus and that the C-1 regularity of the foliation by invariant Lagrangian tori is crucial to prove the continuity of Arnol'd-Liouville coordinates. We also explore various notions of C-0 and Lipschitz integrability.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 50 条
  • [1] C1 smoothness of Liouville arcs in Arnol'd tongues
    Slammert, L
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (06) : 1817 - 1823
  • [2] Complex Arnol'd - Liouville Maps
    Biasco, Luca
    Chierchia, Luigi
    [J]. REGULAR & CHAOTIC DYNAMICS, 2023, 28 (04): : 395 - 424
  • [3] Complex Arnol’d – Liouville Maps
    Luca Biasco
    Luigi Chierchia
    [J]. Regular and Chaotic Dynamics, 2023, 28 : 395 - 424
  • [4] Complete integrability beyond Liouville-Arnol'd
    Bates, L
    Cushman, R
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2005, 56 (01) : 77 - 91
  • [5] Weak Liouville-Arnol'd Theorems and Their Implications
    Butler, Leo T.
    Sorrentino, Alfonso
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 315 (01) : 109 - 133
  • [6] Weak Liouville-Arnol′d Theorems and Their Implications
    Leo T. Butler
    Alfonso Sorrentino
    [J]. Communications in Mathematical Physics, 2012, 315 : 109 - 133
  • [7] A basic C1 perturbation theorem
    Wen, L
    Xia, ZH
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 154 (02) : 267 - 283
  • [8] A THEOREM BY SILNIKOV IN C1,1
    TRESSER, C
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 296 (13): : 545 - 548
  • [9] C1 COUNTEREXAMPLE TO MOSERS TWIST THEOREM
    TAKENS, F
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1971, 74 (04): : 379 - &
  • [10] The Penrose singularity theorem in regularity C1,1
    Kunzinger, Michael
    Steinbauer, Roland
    Vickers, James A.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (15)