Generalized Arnol'd tongues for twist maps of the annulus

被引:3
|
作者
Crovisier, S [1 ]
机构
[1] Univ Paris 11, Dept Math, F-91405 Orsay, France
关键词
D O I
10.1016/S1631-073X(02)02220-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that some twist maps of the annulus exhibit Arnol'd tongues. In the dissipative case we get an estimate for the size of the rotation set. (C) 2002 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:47 / 52
页数:6
相关论文
共 50 条
  • [1] On the widths of the Arnol'd tongues
    Banerjee, Kuntal
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 1451 - 1463
  • [2] Arnol'd tongues and quantum accelerator modes
    Guarneri, Italo
    Rebuzzini, Laura
    Fishman, Shmuel
    [J]. NONLINEARITY, 2006, 19 (05) : 1141 - 1164
  • [3] Complex Bifurcation of Arnol'd Tongues Generated in Three-Coupled Delayed Logistic Maps
    Ogusu, Daiki
    Hidaka, Shuya
    Inaba, Naohiko
    Sekikawa, Munehisa
    Endo, Tetsuro
    [J]. EMERGENT COMPLEXITY FROM NONLINEARITY, IN PHYSICS, ENGINEERING AND THE LIFE SCIENCES, 2017, 191 : 13 - 19
  • [4] Complex Arnol'd - Liouville Maps
    Biasco, Luca
    Chierchia, Luigi
    [J]. REGULAR & CHAOTIC DYNAMICS, 2023, 28 (04): : 395 - 424
  • [5] HEX GAMES AND TWIST MAPS ON THE ANNULUS
    ALPERN, S
    BECK, A
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (09): : 803 - 811
  • [6] Complex Arnol’d – Liouville Maps
    Luca Biasco
    Luigi Chierchia
    [J]. Regular and Chaotic Dynamics, 2023, 28 : 395 - 424
  • [7] C1 smoothness of Liouville arcs in Arnol'd tongues
    Slammert, L
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (06) : 1817 - 1823
  • [8] Twist Maps of the Annulus: An Abstract Point of View
    Patrice Le Calvez
    [J]. Regular and Chaotic Dynamics, 2023, 28 : 343 - 363
  • [9] Drift orbits for families of twist maps of the annulus
    Le Calvez, Patrice
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 869 - 879
  • [10] Twist Maps of the Annulus: An Abstract Point of View
    Le Calvez, Patrice
    [J]. REGULAR & CHAOTIC DYNAMICS, 2023, 28 (04): : 343 - 363