On the widths of the Arnol'd tongues

被引:1
|
作者
Banerjee, Kuntal [1 ]
机构
[1] Abdus Salam Int Ctr Theoret Phys, Math Sect, I-34151 Trieste, Italy
关键词
D O I
10.1017/etds.2013.11
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F : R -> R be a real analytic increasing diffeomorphism with F - Id being 1-periodic. Consider the translated family of maps. (F-t : R -> R)(t is an element of R) defined as F-t(x) = F(x) + t. Let Trans(F-t) be the translation number of F-t defined by Trans(F-t) := lim(n ->+infinity) F-t(on) - Id/n. Assume that there is a Herman ring of modulus 2 tau associated to F and let p(n)/q(n) be the nth convergent of Trans(F) = alpha is an element of R\Q. Denoting by l(theta) the length of the interval {t is an element of R vertical bar Trans(F-t) = theta}, we prove that the sequence (l(pn/qn)) decreases exponentially fast with respect to q(n). More precisely, lim sup(n ->+infinity) 1/q(n) log l(pn/qn) <= -2 pi tau. There is a relation between l(pn/qn) and the width of the Arnol'd tongue, which confirms that the widths of the tongues decrease exponentially fast under suitable conditions.
引用
收藏
页码:1451 / 1463
页数:13
相关论文
共 50 条
  • [1] Arnol'd tongues and quantum accelerator modes
    Guarneri, Italo
    Rebuzzini, Laura
    Fishman, Shmuel
    [J]. NONLINEARITY, 2006, 19 (05) : 1141 - 1164
  • [2] Generalized Arnol'd tongues for twist maps of the annulus
    Crovisier, S
    [J]. COMPTES RENDUS MATHEMATIQUE, 2002, 334 (01) : 47 - 52
  • [3] C1 smoothness of Liouville arcs in Arnol'd tongues
    Slammert, L
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (06) : 1817 - 1823
  • [4] Arnol'd Tongues Arising from a Grazing-Sliding Bifurcation
    Szalai, Robert
    Osinga, Hinke M.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2009, 8 (04): : 1434 - 1461
  • [5] Large amplification in stage-structured models: Arnol’d tongues revisited
    J. V. Greenman
    T. G. Benton
    [J]. Journal of Mathematical Biology, 2004, 48 : 647 - 671
  • [6] Rigorous analysis of Arnol'd tongues from a manifold piecewise linear circuit
    Le, Viet Duc
    Tsubone, Tadashi
    Inaba, Naohiko
    [J]. IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2020, 15 (07) : 1070 - 1076
  • [7] Large amplification in stage-structured models: Arnol'd tongues revisited
    Greenman, JV
    Benton, TG
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2004, 48 (06) : 647 - 671
  • [8] Complex Bifurcation of Arnol'd Tongues Generated in Three-Coupled Delayed Logistic Maps
    Ogusu, Daiki
    Hidaka, Shuya
    Inaba, Naohiko
    Sekikawa, Munehisa
    Endo, Tetsuro
    [J]. EMERGENT COMPLEXITY FROM NONLINEARITY, IN PHYSICS, ENGINEERING AND THE LIFE SCIENCES, 2017, 191 : 13 - 19
  • [9] Arnol'd tongues for a resonant injection-locked frequency divider: Analytical and numerical results
    Bartuccelli, M. V.
    Deane, J. H. B.
    Gentile, G.
    Schilder, F.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 3344 - 3362
  • [10] Border-collision bifurcations and Arnol'd tongues in two coupled piecewise-constant oscillators
    Tri Quoc Truong
    Tsubone, Tadashi
    Sekikawa, Munehisa
    Inaba, Naohiko
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2020, 401