Confinement for all couplings in a Z2 lattice gauge theory

被引:1
|
作者
Orland, P. [1 ,2 ]
机构
[1] CUNY Bernard M Baruch Coll, Dept Nat Sci, 17 Lexington Ave, New York, NY 10010 USA
[2] CUNY, Phys Program, Grad Ctr, New York, NY 10016 USA
关键词
confinement; lattice gauge theory; statistical mechanics; Griffiths inequalities; REFLECTION POSITIVITY; PHASE-TRANSITIONS; RANGE;
D O I
10.1088/1751-8121/ab766a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a particular lattice gauge theory with gauge invariance there is confinement for all couplings. The gauge fields, on lattice links, lie in the closed interval . It is proved that the expectation value of a gauge-invariant loop operator decays as the exponential of minus the area.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Confinement in a Z2 lattice gauge theory on a quantum computer
    Mildenberger, Julius
    Mruczkiewicz, Wojciech
    Halimeh, Jad C.
    Jiang, Zhang
    Hauke, Philipp
    Nature Physics, 2025, 21 (02) : 312 - 317
  • [2] Confinement induced frustration in a one-dimensional Z2 lattice gauge theory
    Kebric, Matjaz
    Borla, Umberto
    Schollwoeck, Ulrich
    Moroz, Sergej
    Barbiero, Luca
    Grusdt, Fabian
    NEW JOURNAL OF PHYSICS, 2023, 25 (01):
  • [3] Simulating Z2 lattice gauge theory on a quantum computer
    Charles, Clement
    Gustafson, Erik J.
    Hardt, Elizabeth
    Herren, Florian
    Hogan, Norman
    Lamm, Henry
    Starecheski, Sara
    Van de Water, Roth S.
    Wagman, Michael L.
    PHYSICAL REVIEW E, 2024, 109 (01)
  • [4] Percolation renormalization group analysis of confinement in Z2 lattice gauge theories
    Dünnweber, Gesa
    Linsel, Simon M.
    Bohrdt, Annabelle
    Grusdt, Fabian
    Physical Review B, 2025, 111 (02)
  • [5] LINEARIZATION OF Z2 LATTICE GAUGE-THEORY IN 4 DIMENSIONS
    FOERSTER, D
    UKAWA, A
    PHYSICS LETTERS B, 1982, 113 (01) : 51 - 56
  • [6] Quantum simulation of Z2 lattice gauge theory with minimal resources
    Irmejs, Reinis
    Banuls, Mari-Carmen
    Cirac, J. Ignacio
    PHYSICAL REVIEW D, 2023, 108 (07)
  • [7] CONTINUUM-LIMIT OF A Z2 LATTICE GAUGE-THEORY
    BREZIN, E
    DROUFFE, JM
    NUCLEAR PHYSICS B, 1982, 200 (01) : 93 - 106
  • [8] Emergent statistical bubble localization in a Z2 lattice gauge theory
    Yarloo, H.
    Mohseni-Rajaee, M.
    Langari, A.
    PHYSICAL REVIEW B, 2019, 99 (05)
  • [9] Simulating Z2 lattice gauge theory with the variational quantum thermalizer
    Fromm, Michael
    Philipsen, Owe
    Spannowsky, Michael
    Winterowd, Christopher
    EPJ QUANTUM TECHNOLOGY, 2024, 11 (01)
  • [10] Z2 gauge theory for valence bond solids on the kagome lattice
    Hwang, Kyusung
    Huh, Yejin
    Kim, Yong Baek
    PHYSICAL REVIEW B, 2015, 92 (20):