Simulating Z2 lattice gauge theory on a quantum computer

被引:8
|
作者
Charles, Clement [1 ,2 ]
Gustafson, Erik J. [3 ,4 ,5 ]
Hardt, Elizabeth [6 ,7 ]
Herren, Florian [3 ]
Hogan, Norman [8 ]
Lamm, Henry [3 ]
Starecheski, Sara [9 ,10 ]
Van de Water, Roth S. [3 ]
Wagman, Michael L. [3 ]
机构
[1] Univ West Indies, Dept Phys, St Augustine Campus, St Augustine, Trinidad Tobago
[2] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[3] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
[4] NASA, Quantum Artificial Intelligence Lab QHAIL, Ames Res Ctr, Moffett Field, CA 94035 USA
[5] USRA Res Inst Adv Comp Sci RIACS, Mountain View, CA 94043 USA
[6] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[7] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[8] North Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
[9] Sarah Lawrence Coll, Dept Phys, Bronxville, NY 10708 USA
[10] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
基金
美国国家航空航天局;
关键词
EIGENSOLVER;
D O I
10.1103/PhysRevE.109.015307
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The utility of quantum computers for simulating lattice gauge theories is currently limited by the noisiness of the physical hardware. Various quantum error mitigation strategies exist to reduce the statistical and systematic uncertainties in quantum simulations via improved algorithms and analysis strategies. We perform quantum simulations of Z(2) gauge theory with matter to study the efficacy and interplay of different error mitigation methods: readout error mitigation, randomized compiling, rescaling, and dynamical decoupling. We compute Minkowski correlation functions in this confining gauge theory and extract the mass of the lightest spin-1 state from fits to their time dependence. Quantum error mitigation extends the range of times over which our correlation function calculations are accurate by a factor of 6 and is therefore essential for obtaining reliable masses.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Confinement in a Z2 lattice gauge theory on a quantum computer
    Mildenberger, Julius
    Mruczkiewicz, Wojciech
    Halimeh, Jad C.
    Jiang, Zhang
    Hauke, Philipp
    Nature Physics, 2025, 21 (02) : 312 - 317
  • [2] Simulating Z2 lattice gauge theory with the variational quantum thermalizer
    Fromm, Michael
    Philipsen, Owe
    Spannowsky, Michael
    Winterowd, Christopher
    EPJ QUANTUM TECHNOLOGY, 2024, 11 (01)
  • [3] Quantum simulation of Z2 lattice gauge theory with minimal resources
    Irmejs, Reinis
    Banuls, Mari-Carmen
    Cirac, J. Ignacio
    PHYSICAL REVIEW D, 2023, 108 (07)
  • [4] Photon-Mediated Stroboscopic Quantum Simulation of a Z2 Lattice Gauge Theory
    Armon, Tsafrir
    Ashkenazi, Shachar
    Garcia-Moreno, Gerardo
    Gonzalez-Tudela, Alejandro
    Zohar, Erez
    PHYSICAL REVIEW LETTERS, 2021, 127 (25)
  • [5] Correspondence between the Hamiltonian cycle problem and the quantum Z2 lattice gauge theory
    Cui, Xiaopeng
    Shi, Yu
    EPL, 2023, 144 (04)
  • [6] Confinement for all couplings in a Z2 lattice gauge theory
    Orland, P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (13)
  • [7] LINEARIZATION OF Z2 LATTICE GAUGE-THEORY IN 4 DIMENSIONS
    FOERSTER, D
    UKAWA, A
    PHYSICS LETTERS B, 1982, 113 (01) : 51 - 56
  • [8] CONTINUUM-LIMIT OF A Z2 LATTICE GAUGE-THEORY
    BREZIN, E
    DROUFFE, JM
    NUCLEAR PHYSICS B, 1982, 200 (01) : 93 - 106
  • [9] Emergent statistical bubble localization in a Z2 lattice gauge theory
    Yarloo, H.
    Mohseni-Rajaee, M.
    Langari, A.
    PHYSICAL REVIEW B, 2019, 99 (05)
  • [10] Z2 gauge theory for valence bond solids on the kagome lattice
    Hwang, Kyusung
    Huh, Yejin
    Kim, Yong Baek
    PHYSICAL REVIEW B, 2015, 92 (20):