Simulating Z2 lattice gauge theory on a quantum computer

被引:8
|
作者
Charles, Clement [1 ,2 ]
Gustafson, Erik J. [3 ,4 ,5 ]
Hardt, Elizabeth [6 ,7 ]
Herren, Florian [3 ]
Hogan, Norman [8 ]
Lamm, Henry [3 ]
Starecheski, Sara [9 ,10 ]
Van de Water, Roth S. [3 ]
Wagman, Michael L. [3 ]
机构
[1] Univ West Indies, Dept Phys, St Augustine Campus, St Augustine, Trinidad Tobago
[2] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[3] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
[4] NASA, Quantum Artificial Intelligence Lab QHAIL, Ames Res Ctr, Moffett Field, CA 94035 USA
[5] USRA Res Inst Adv Comp Sci RIACS, Mountain View, CA 94043 USA
[6] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[7] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[8] North Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
[9] Sarah Lawrence Coll, Dept Phys, Bronxville, NY 10708 USA
[10] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
基金
美国国家航空航天局;
关键词
EIGENSOLVER;
D O I
10.1103/PhysRevE.109.015307
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The utility of quantum computers for simulating lattice gauge theories is currently limited by the noisiness of the physical hardware. Various quantum error mitigation strategies exist to reduce the statistical and systematic uncertainties in quantum simulations via improved algorithms and analysis strategies. We perform quantum simulations of Z(2) gauge theory with matter to study the efficacy and interplay of different error mitigation methods: readout error mitigation, randomized compiling, rescaling, and dynamical decoupling. We compute Minkowski correlation functions in this confining gauge theory and extract the mass of the lightest spin-1 state from fits to their time dependence. Quantum error mitigation extends the range of times over which our correlation function calculations are accurate by a factor of 6 and is therefore essential for obtaining reliable masses.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] QUASI-TOPOLOGICAL QUANTUM FIELD THEORIES AND Z2 LATTICE GAUGE THEORIES
    Ferreira, Miguel J. B.
    Pereira, Victor A.
    Teotonio-Sobrinho, Paulo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2012, 27 (23):
  • [22] Toward quantum simulations of Z2 gauge theory without state preparation
    Gustafson, Erik J.
    Lamm, Henry
    PHYSICAL REVIEW D, 2021, 103 (05)
  • [23] Confinement induced frustration in a one-dimensional Z2 lattice gauge theory
    Kebric, Matjaz
    Borla, Umberto
    Schollwoeck, Ulrich
    Moroz, Sergej
    Barbiero, Luca
    Grusdt, Fabian
    NEW JOURNAL OF PHYSICS, 2023, 25 (01):
  • [24] MODIFIED WILSON ACTION AND Z2 ARTIFACTS IN SU(2) LATTICE GAUGE-THEORY
    BORNYAKOV, VG
    CREUTZ, M
    MITRJUSHKIN, VK
    PHYSICAL REVIEW D, 1991, 44 (12): : 3918 - 3923
  • [25] Localization of Dirac modes in finite-temperature Z2 gauge theory on the lattice
    Baranka, Gyorgy
    Giordano, Matteo
    PHYSICAL REVIEW D, 2021, 104 (05)
  • [26] FERMION REPRESENTATION FOR THE Z2 LATTICE GAUGE-THEORY IN 2+1 DIMENSIONS
    FRADKIN, E
    SREDNICKI, M
    SUSSKIND, L
    PHYSICAL REVIEW D, 1980, 21 (10) : 2885 - 2891
  • [27] FINITE-TEMPERATURE ANALYSIS OF SU(2)/Z2 LATTICE GAUGE-THEORY
    BURDEN, CJ
    NUCLEAR PHYSICS B, 1985, 257 (05) : 663 - 694
  • [28] Quantum simulation of the one-dimensional Fermi-Hubbard model as a Z2 lattice-gauge theory
    Khodaeva, Uliana E.
    Kovrizhin, Dmitry L.
    Knolle, Johannes
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [29] Simulating 2D Effects in Lattice Gauge Theories on a Quantum Computer
    Paulson, Danny
    Dellantonio, Luca
    Haase, Jan F.
    Celi, Alessio
    Kan, Angus
    Jena, Andrew
    Kokail, Christian
    van Bijnen, Rick
    Jansen, Karl
    Zoller, Peter
    Muschik, Christine A.
    PRX QUANTUM, 2021, 2 (03):
  • [30] COMPARISON OF LATTICE GAUGE-THEORIES WITH GAUGE GROUPS Z2 AND SU(2)
    MACK, G
    PETKOVA, VB
    ANNALS OF PHYSICS, 1979, 123 (02) : 442 - 467