Simulating Z2 lattice gauge theory on a quantum computer

被引:8
|
作者
Charles, Clement [1 ,2 ]
Gustafson, Erik J. [3 ,4 ,5 ]
Hardt, Elizabeth [6 ,7 ]
Herren, Florian [3 ]
Hogan, Norman [8 ]
Lamm, Henry [3 ]
Starecheski, Sara [9 ,10 ]
Van de Water, Roth S. [3 ]
Wagman, Michael L. [3 ]
机构
[1] Univ West Indies, Dept Phys, St Augustine Campus, St Augustine, Trinidad Tobago
[2] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[3] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
[4] NASA, Quantum Artificial Intelligence Lab QHAIL, Ames Res Ctr, Moffett Field, CA 94035 USA
[5] USRA Res Inst Adv Comp Sci RIACS, Mountain View, CA 94043 USA
[6] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[7] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[8] North Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
[9] Sarah Lawrence Coll, Dept Phys, Bronxville, NY 10708 USA
[10] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
基金
美国国家航空航天局;
关键词
EIGENSOLVER;
D O I
10.1103/PhysRevE.109.015307
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The utility of quantum computers for simulating lattice gauge theories is currently limited by the noisiness of the physical hardware. Various quantum error mitigation strategies exist to reduce the statistical and systematic uncertainties in quantum simulations via improved algorithms and analysis strategies. We perform quantum simulations of Z(2) gauge theory with matter to study the efficacy and interplay of different error mitigation methods: readout error mitigation, randomized compiling, rescaling, and dynamical decoupling. We compute Minkowski correlation functions in this confining gauge theory and extract the mass of the lightest spin-1 state from fits to their time dependence. Quantum error mitigation extends the range of times over which our correlation function calculations are accurate by a factor of 6 and is therefore essential for obtaining reliable masses.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] RANDOM SURFACE DYNAMICS FOR Z2 GAUGE-THEORY
    BROWER, RC
    HUANG, SZ
    PHYSICAL REVIEW D, 1990, 41 (02): : 708 - 711
  • [42] Two-Dimensional Z2 Lattice Gauge Theory on a Near-Term Quantum Simulator: Variational Quantum Optimization, Confinement, and Topological Order
    Lumia, Luca
    Torta, Pietro
    Mbeng, Glen B.
    Santoro, Giuseppe E.
    Ercolessi, Elisa
    Burrello, Michele
    Wauters, Matteo M.
    PRX QUANTUM, 2022, 3 (02):
  • [43] Phenomenological Z2 lattice gauge theory of the spin-liquid state of the kagome Heisenberg antiferromagnet
    Wan, Yuan
    Tchernyshyov, Oleg
    PHYSICAL REVIEW B, 2013, 87 (10)
  • [44] One-dimensional Z2 lattice gauge theory in periodic Gauss-law sectors
    Sharma, Vaibhav
    Mueller, Erich J.
    PHYSICAL REVIEW A, 2024, 110 (03)
  • [45] Spinless fermions in a Z2 gauge theory on a triangular ladder
    Brenig, Wolfram
    PHYSICAL REVIEW B, 2022, 105 (24)
  • [46] The Klein Gordon equation on Z2 and the quantum harmonic lattice
    Borovyk, Vita
    Goldberg, Michael
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 107 (06): : 667 - 696
  • [47] Realistic scheme for quantum simulation of Z2 lattice gauge theories with dynamical matter in (2+1)D
    Homeier, Lukas
    Bohrdt, Annabelle
    Linsel, Simon
    Demler, Eugene
    Halimeh, Jad C. C.
    Grusdt, Fabian
    COMMUNICATIONS PHYSICS, 2023, 6 (01)
  • [48] Floquet engineering of a dynamical Z2 lattice gauge field with ultracold atoms
    Sun, Xiangxiang
    Qi, Hao-Yue
    Zhang, Pengfei
    Zheng, Wei
    Chinese Physics B, 2024, 33 (11)
  • [49] Percolation renormalization group analysis of confinement in Z2 lattice gauge theories
    Dünnweber, Gesa
    Linsel, Simon M.
    Bohrdt, Annabelle
    Grusdt, Fabian
    Physical Review B, 2025, 111 (02)
  • [50] Non-invertible topological defects in 4-dimensional Z2 pure lattice gauge theory
    Koide, Masataka
    Nagoya, Yuta
    Yamaguchi, Satoshi
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2022, 2022 (01):