Simulating Z2 lattice gauge theory on a quantum computer

被引:8
|
作者
Charles, Clement [1 ,2 ]
Gustafson, Erik J. [3 ,4 ,5 ]
Hardt, Elizabeth [6 ,7 ]
Herren, Florian [3 ]
Hogan, Norman [8 ]
Lamm, Henry [3 ]
Starecheski, Sara [9 ,10 ]
Van de Water, Roth S. [3 ]
Wagman, Michael L. [3 ]
机构
[1] Univ West Indies, Dept Phys, St Augustine Campus, St Augustine, Trinidad Tobago
[2] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[3] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
[4] NASA, Quantum Artificial Intelligence Lab QHAIL, Ames Res Ctr, Moffett Field, CA 94035 USA
[5] USRA Res Inst Adv Comp Sci RIACS, Mountain View, CA 94043 USA
[6] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[7] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[8] North Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
[9] Sarah Lawrence Coll, Dept Phys, Bronxville, NY 10708 USA
[10] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
基金
美国国家航空航天局;
关键词
EIGENSOLVER;
D O I
10.1103/PhysRevE.109.015307
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The utility of quantum computers for simulating lattice gauge theories is currently limited by the noisiness of the physical hardware. Various quantum error mitigation strategies exist to reduce the statistical and systematic uncertainties in quantum simulations via improved algorithms and analysis strategies. We perform quantum simulations of Z(2) gauge theory with matter to study the efficacy and interplay of different error mitigation methods: readout error mitigation, randomized compiling, rescaling, and dynamical decoupling. We compute Minkowski correlation functions in this confining gauge theory and extract the mass of the lightest spin-1 state from fits to their time dependence. Quantum error mitigation extends the range of times over which our correlation function calculations are accurate by a factor of 6 and is therefore essential for obtaining reliable masses.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Scar states in deconfined Z2 lattice gauge theories
    Aramthottil, Adith Sai
    Bhattacharya, Utso
    Gonzalez-Cuadra, Daniel
    Lewenstein, Maciej
    Barbiero, Luca
    Zakrzewski, Jakub
    PHYSICAL REVIEW B, 2022, 106 (04)
  • [32] Electric-magnetic duality and Z2 symmetry enriched Abelian lattice gauge theory
    Jia, Zhian
    Kaszlikowski, Dagomir
    Tan, Sheng
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (25)
  • [33] Emergence of Gauss' law in a Z2 lattice gauge theory in 1+1 dimensions
    Frank, Jernej
    Huffman, Emilie
    Chandrasekharan, Shailesh
    PHYSICS LETTERS B, 2020, 806
  • [34] Topological defect junctions in 4-dimensional pure Z2 lattice gauge theory
    Nagoya, Y.
    PROCEEDINGS OF THE EAST ASIA JOINT SYMPOSIUM ON FIELDS AND STRINGS 2021, 2022, : 111 - 119
  • [35] Z2 x Z2 lattice as a Connes-Lott-quantum group model
    Majid, S
    Schücker, T
    JOURNAL OF GEOMETRY AND PHYSICS, 2002, 43 (01) : 1 - 26
  • [36] Matrix product representation of gauge invariant states in a Z2 lattice gauge theory -: art. no. 022
    Sugihara, T
    JOURNAL OF HIGH ENERGY PHYSICS, 2005, (07):
  • [37] Z2 lattice gauge theories and Kitaev's toric code: A scheme for analog quantum simulation
    Homeier, Lukas
    Schweizer, Christian
    Aidelsburger, Monika
    Fedorov, Arkady
    Grusdt, Fabian
    PHYSICAL REVIEW B, 2021, 104 (08)
  • [38] Investigation of the critical behavior of the critical point of the Z2 gauge lattice
    Blum, Y
    Coyle, PK
    Elitzur, S
    Rabinovici, E
    Rubinstein, H
    Solomon, S
    NUCLEAR PHYSICS B, 1998, 535 (03) : 731 - 738
  • [39] Z2 GAUGE-MODEL ON THE TRUNCATED-TETRAHEDRON LATTICE
    CAMPESINOROMEO, E
    DOLIVO, JC
    SOCOLOVSKY, M
    LETTERE AL NUOVO CIMENTO, 1982, 33 (02): : 52 - 56
  • [40] Simple Z2 lattice gauge theories at finite fermion density
    Prosko, Christian
    Lee, Shu-Ping
    Maciejko, Joseph
    PHYSICAL REVIEW B, 2017, 96 (20)