Confinement for all couplings in a Z2 lattice gauge theory

被引:1
|
作者
Orland, P. [1 ,2 ]
机构
[1] CUNY Bernard M Baruch Coll, Dept Nat Sci, 17 Lexington Ave, New York, NY 10010 USA
[2] CUNY, Phys Program, Grad Ctr, New York, NY 10016 USA
关键词
confinement; lattice gauge theory; statistical mechanics; Griffiths inequalities; REFLECTION POSITIVITY; PHASE-TRANSITIONS; RANGE;
D O I
10.1088/1751-8121/ab766a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a particular lattice gauge theory with gauge invariance there is confinement for all couplings. The gauge fields, on lattice links, lie in the closed interval . It is proved that the expectation value of a gauge-invariant loop operator decays as the exponential of minus the area.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] The confinement problem in lattice gauge theory
    Greensite, J
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 51, NO 1, 2003, 51 (01): : 1 - 83
  • [42] Vison states and confinement transitions of Z2 spin liquids on the kagome lattice
    Huh, Yejin
    Punk, Matthias
    Sachdev, Subir
    PHYSICAL REVIEW B, 2011, 84 (09)
  • [43] Confinement-deconfinement transition and Z2 symmetry in Z2+Higgs theory
    Biswal, Minati
    Digal, Sanatan
    Mamale, Vinod
    Shaikh, Sabiar
    MODERN PHYSICS LETTERS A, 2021, 36 (30)
  • [44] Confinement-induced enhancement of superconductivity in a spin-21 fermion chain coupled to a Z2 lattice gauge field
    Ge, Zi-Yong
    Nori, Franco
    PHYSICAL REVIEW B, 2023, 107 (12)
  • [45] Fractionalization and confinement in the U(1) and Z2 gauge theories of strongly correlated systems
    Senthil, T
    Fisher, MPA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (10): : L119 - L125
  • [46] Floquet engineering of a dynamical Z2 lattice gauge field with ultracold atoms
    Sun, Xiangxiang
    Qi, Hao-Yue
    Zhang, Pengfei
    Zheng, Wei
    Chinese Physics B, 2024, 33 (11)
  • [47] A real-space renormalization-group calculation for the quantum Z2 gauge theory on a square lattice
    Paik, Steve T.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (01):
  • [48] Large center vortices and confinement in 3D Z2 gauge theory -: art. no. 017501
    Gliozzi, F
    Panero, M
    Provero, P
    PHYSICAL REVIEW D, 2002, 66 (01)
  • [49] Non-invertible topological defects in 4-dimensional Z2 pure lattice gauge theory
    Koide, Masataka
    Nagoya, Yuta
    Yamaguchi, Satoshi
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2022, 2022 (01):
  • [50] Z2 gauge theory description of the Mott transition in infinite dimensions
    Zitko, Rok
    Fabrizio, Michele
    PHYSICAL REVIEW B, 2015, 91 (24):