Early Detection of Prone to Failure Student Using Machine Learning Techniques

被引:0
|
作者
Kadam, Prabha Siddhesh [1 ]
Vaze, Vinod Moreshwar
机构
[1] Shri JJT Univ, Comp Sci, Churela, Rajasthan, India
来源
关键词
MACHINE LEARNING; EARLY DETECTIONON; NAIVE BAYES CLASSIFIERS; LOGISTIC REGRESSION; SUPERVISED LEARNING;
D O I
10.21786/bbrc/14.5/7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Machine learning techniques works on experience uses historical data and process them. The algorithms help to reveal facts and shows the path to move towards success. This study, uses for early detection of prone to failure using machine learning techniques. Supervised approach of machine learning used to analysis data in python colab environment. The Sample size 300 records used to evaluate data. Outcomes shows 82% accuracy with Naive Bayes classifiers. The study classifies records among three classes good, average and poor students.
引用
收藏
页码:36 / 39
页数:4
相关论文
共 50 条
  • [21] Multiple Disease Detection using Machine Learning Techniques
    Acharya, Dipanjan
    Eashwer, K.
    Kumar, Soumya
    Sivakumar, R.
    Kishoreraja, P. C.
    Srinivasagan, Ramasamy
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2023, 19 (13) : 120 - 137
  • [22] Network Intrusion Detection Using Machine Learning Techniques
    Almutairi, Yasmeen
    Alhazmi, Bader
    Munshi, Amr
    ADVANCES IN SCIENCE AND TECHNOLOGY-RESEARCH JOURNAL, 2022, 16 (03) : 193 - 206
  • [23] Phishing Email Detection Using Machine Learning Techniques
    Alattas, Hussain
    Aljohar, Fay
    Aljunibi, Hawra
    Alweheibi, Muneera
    Alrashdi, Rawan
    Al Azman, Ghadeer
    Alharby, Abdulrahman
    Nagy, Naya
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (04): : 678 - 685
  • [24] SQL Injection Detection Using Machine Learning Techniques
    Hosam, Eman
    Hosny, Hagar
    Ashraf, Walaa
    Kaseb, Ahmed S.
    2021 8TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE (ISCMI 2021), 2021, : 15 - 20
  • [25] DDoS Detection in SDN using Machine Learning Techniques
    Nadeem, Muhammad Waqas
    Goh, Hock Guan
    Ponnusamy, Vasaki
    Aun, Yichiet
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (01): : 771 - 789
  • [26] Detection of Malware in the Network Using Machine Learning Techniques
    Yogesh, B.
    Reddy, G.Suresh
    Proceedings - 2022 International Conference on Recent Trends in Microelectronics, Automation, Computing and Communications Systems, ICMACC 2022, 2022, : 204 - 211
  • [27] Design Pattern Detection using Machine Learning Techniques
    Chaturvedi, Shivam
    Chaturvedi, Amrita
    Tiwari, Anurag
    Agarwal, Shalini
    2018 7TH INTERNATIONAL CONFERENCE ON RELIABILITY, INFOCOM TECHNOLOGIES AND OPTIMIZATION (TRENDS AND FUTURE DIRECTIONS) (ICRITO) (ICRITO), 2018, : 246 - 251
  • [28] Detection of DoS attacks using machine learning techniques
    Kumar D.
    Kukreja V.
    Kadyan V.
    Mittal M.
    International Journal of Vehicle Autonomous Systems, 2020, 15 (3-4): : 256 - 270
  • [29] Hepatocellular Carcinoma Detection Using Machine Learning Techniques
    Angelis, Ioannis
    Exarchos, Themis
    GENEDIS 2020: COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 1338 : 21 - 29
  • [30] Driver distraction detection using machine learning techniques
    Pisharody, Deepthi M.
    Chacko, Binu P.
    Basheer, K. P. Mohamed
    MATERIALS TODAY-PROCEEDINGS, 2022, 58 : 251 - 255