DDoS Detection in SDN using Machine Learning Techniques

被引:16
|
作者
Nadeem, Muhammad Waqas [1 ]
Goh, Hock Guan [1 ]
Ponnusamy, Vasaki [1 ]
Aun, Yichiet [1 ]
机构
[1] Univ Tunku Abdul Rahman UTAR, Fac Informat & Commun Technol FICT, Jalan Univ, Kampar 31900, Perak, Malaysia
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2022年 / 71卷 / 01期
关键词
Machine learning; software-defined network; distributed denial of services; feature selection; protection; artificial neural network; decision trees; naive bayes; security; SOFTWARE-DEFINED NETWORKING; INTRUSION DETECTION; ATTACKS; MITIGATION; TAXONOMY; FLOW;
D O I
10.32604/cmc.2022.021669
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Software-defined network (SDN) becomes a new revolutionary paradigm in networks because it provides more control and network operation over a network infrastructure. The SDN controller is considered as the operating system of the SDN based network infrastructure, and it is responsible for executing the different network applications and maintaining the network services and functionalities. Despite all its tremendous capabilities, the SDN face many security issues due to the complexity of the SDN architecture. Distributed denial of services (DDoS) is a common attack on SDN due to its centralized architecture, especially at the control layer of the SDN that has a network-wide impact. Machine learning is now widely used for fast detection of these attacks. In this paper, some important feature selection methods for machine learning on DDoS detection are evaluated. The selection of optimal features reflects the classification accuracy of the machine learning techniques and the performance of the SDN controller. A comparative analysis of feature selection and machine learning classifiers is also derived to detect SDN attacks. The experimental results show that the Random forest (RF) classifier trains the more accurate model with 99.97% accuracy using features subset by the Recursive feature elimination (RFE) method.
引用
收藏
页码:771 / 789
页数:19
相关论文
共 50 条
  • [1] DDoS Attacks Detection and Mitigation in SDN using Machine Learning
    Rahman, Obaid
    Quraishi, Mohammad Ali Gauhar
    Lung, Chung-Horng
    [J]. 2019 IEEE WORLD CONGRESS ON SERVICES (IEEE SERVICES 2019), 2019, : 184 - 189
  • [2] DDoS Attack Detection and Mitigation in SDN using Machine Learning
    Khashab, Fatima
    Moubarak, Joanna
    Feghali, Antoine
    Bassil, Carole
    [J]. PROCEEDINGS OF THE 2021 IEEE 7TH INTERNATIONAL CONFERENCE ON NETWORK SOFTWARIZATION (NETSOFT 2021): ACCELERATING NETWORK SOFTWARIZATION IN THE COGNITIVE AGE, 2021, : 395 - 401
  • [3] EFFICIENT DDoS ATTACK DETECTION USING MACHINE LEARNING TECHNIQUES
    Nazarudeen, Fathima
    Sundar, Sumod
    [J]. 2022 IEEE INTERNATIONAL POWER AND RENEWABLE ENERGY CONFERENCE, IPRECON, 2022,
  • [4] Machine Learning Techniques to Detect a DDoS Attack in SDN: A Systematic Review
    Ali, Tariq Emad
    Chong, Yung-Wey
    Manickam, Selvakumar
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [5] A Machine Learning Based Detection and Mitigation of the DDOS Attack by Using SDN Controller Framework
    Revathi, M.
    Ramalingam, V. V.
    Amutha, B.
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2022, 127 (03) : 2417 - 2441
  • [6] A Machine Learning Based Detection and Mitigation of the DDOS Attack by Using SDN Controller Framework
    M. Revathi
    V. V. Ramalingam
    B. Amutha
    [J]. Wireless Personal Communications, 2022, 127 (3) : 2417 - 2441
  • [7] DDoS Attack Detection on IoT Devices Using Machine Learning Techniques
    Kumar, Sunil
    Sahu, Rohit Kumar
    Rudra, Bhawana
    [J]. INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, ISDA 2021, 2022, 418 : 787 - 794
  • [8] A Lightweight Model for DDoS Attack Detection Using Machine Learning Techniques
    Sadhwani, Sapna
    Manibalan, Baranidharan
    Muthalagu, Raja
    Pawar, Pranav
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [9] RMCARTAM For DDoS Attack Mitigation in SDN Using Machine Learning
    Revathi, M.
    Ramalingam, V.V.
    Amutha, B.
    [J]. Computer Systems Science and Engineering, 2023, 45 (03): : 3023 - 3036
  • [10] DDoS Detection using Machine Learning
    Nagah, Nour Ahmed
    Bahaa, Mariam
    Elsersy, Wael Farouk
    [J]. 2024 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE AND SMART INNOVATION, ICMISI 2024, 2024, : 94 - 100