Early Detection of Prone to Failure Student Using Machine Learning Techniques

被引:0
|
作者
Kadam, Prabha Siddhesh [1 ]
Vaze, Vinod Moreshwar
机构
[1] Shri JJT Univ, Comp Sci, Churela, Rajasthan, India
来源
关键词
MACHINE LEARNING; EARLY DETECTIONON; NAIVE BAYES CLASSIFIERS; LOGISTIC REGRESSION; SUPERVISED LEARNING;
D O I
10.21786/bbrc/14.5/7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Machine learning techniques works on experience uses historical data and process them. The algorithms help to reveal facts and shows the path to move towards success. This study, uses for early detection of prone to failure using machine learning techniques. Supervised approach of machine learning used to analysis data in python colab environment. The Sample size 300 records used to evaluate data. Outcomes shows 82% accuracy with Naive Bayes classifiers. The study classifies records among three classes good, average and poor students.
引用
收藏
页码:36 / 39
页数:4
相关论文
共 50 条
  • [41] Early detection and classification of liver diseases in ultrasound images using hybrid machine learning techniques
    Yogegowda, Prasad Adaguru
    Metan, Jyoti
    Kumar, Kurilinga Sannalingappa Ananda
    Hanumanthegowda, Shiva Prasad Kumbenahalli
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (27):
  • [42] Advanced machine learning techniques for cardiovascular disease early detection and diagnosis
    Baghdadi, Nadiah A.
    Abdelaliem, Sally Mohammed Farghaly
    Malki, Amer
    Gad, Ibrahim
    Ewis, Ashraf
    Atlam, Elsayed
    JOURNAL OF BIG DATA, 2023, 10 (01)
  • [43] Early Detection of Sepsis With Machine Learning Techniques: A Brief Clinical Perspective
    Giacobbe, Daniele Roberto
    Signori, Alessio
    Del Puente, Filippo
    Mora, Sara
    Carmisciano, Luca
    Briano, Federica
    Vena, Antonio
    Ball, Lorenzo
    Robba, Chiara
    Pelosi, Paolo
    Giacomini, Mauro
    Bassetti, Matteo
    FRONTIERS IN MEDICINE, 2021, 8
  • [44] Advanced machine learning techniques for cardiovascular disease early detection and diagnosis
    Nadiah A. Baghdadi
    Sally Mohammed Farghaly Abdelaliem
    Amer Malki
    Ibrahim Gad
    Ashraf Ewis
    Elsayed Atlam
    Journal of Big Data, 10
  • [45] EARLY PREDICTION OF CERVICAL CANCER USING MACHINE LEARNING TECHNIQUES
    Al-Batah, Mohammad Subhi
    Alzyoud, Mazen
    Alazaidah, Raed
    Toubat, Malek
    Alzoubi, Haneen
    Olaiyat, Areej
    JORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY, 2022, 8 (04): : 357 - 369
  • [46] Early Detection of Lung Carcinoma Using Machine Learning
    Oliver, A. Sheryl
    Jayasankar, T.
    Sekar, K. R.
    Devi, T. Kalavathi
    Shalini, R.
    Poojalaxmi, S.
    Viswesh, N. G.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 30 (03): : 755 - 770
  • [47] Early Detection of Plant Faults by Using Machine Learning
    Henmi, Tomohiro
    Inoue, Akira
    Deng, Mingcong
    Yoshinaga, Sin-ichi
    2016 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2016, : 201 - 205
  • [48] Early detection of sepsis using machine learning algorithms
    Abd El-Aziz, Rasha M.
    Rayan, Alanazi
    Alexandria Engineering Journal, 2025, 111 : 47 - 56
  • [49] Early Delirium Detection Using Machine Learning Algorithms
    Figueiredo, Celia
    Braga, Ana Cristina
    Mariz, Jose
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2022 WORKSHOPS, PT I, 2022, 13377 : 555 - 570
  • [50] Heart Failure Detection Using Quantum-Enhanced Machine Learning and Traditional Machine Learning Techniques for Internet of Artificially Intelligent Medical Things
    Kumar, Yogesh
    Koul, Apeksha
    Sisodia, Pushpendra Singh
    Shafi, Jana
    Verma, Kavita
    Gheisari, Mehdi
    Davoodi, Mohamad Bagher
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021