Techniques for dual forms of Reed-Muller expansion conversion

被引:9
|
作者
Yang, M.
Wang, L. [1 ]
Tong, J. R.
Almaini, A. E. A.
机构
[1] Fudan Univ, Microelect Dept, State Key Lab ASIC & Syst, Shanghai 201203, Peoples R China
[2] Napier Polytech, Sch Engn, Edinburgh EH10 5DT, Midlothian, Scotland
基金
中国国家自然科学基金;
关键词
tabular technique; map technique; reed-muller; canonical OR coincidence;
D O I
10.1016/j.vlsi.2007.02.001
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Dual Forms of Reed-Muller (DFRM) are implemented in OR/XNOR forms, which are based on the features of coincidence operation. Map folding and transformation techniques are proposed for the conversion between Boolean and DFRM expansions. However, map techniques can only be used for up to 6 variables. To overcome the limitation, serial tabular technique (STT) and parallel tabular technique (PTT) are proposed. STT deals with one variable at a time while PTT generates terms in parallel. Both tabular techniques outperform significantly published work in terms of conversion time. Methods based on on-set canonical sum-of-products minterms and canonical product-of-sums maxterms are also investigated. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 50 条
  • [1] DUAL FORMS OF REED-MULLER EXPANSIONS
    GREEN, DH
    IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 1994, 141 (03): : 184 - 192
  • [2] Minimization of Dual Reed-Muller forms using Dual property
    Faraj, K.
    Almaini, A.E.A.
    WSEAS Transactions on Circuits and Systems, 2007, 6 (01): : 9 - 15
  • [3] Synthesis of multi-level Dual Reed-Muller forms
    Department of Computer Science, Wajdi Institute of Technology, P.O. Box 19014, Mount of Olives, Jerusalem, Israel
    WSEAS Transactions on Electronics, 2008, 5 (08): : 345 - 349
  • [4] Optimal expression for fixed polarity dual Reed-Muller forms
    Faraj, Khalid
    Almaini, A.E.A.
    WSEAS Transactions on Circuits and Systems, 2007, 6 (03): : 364 - 371
  • [5] MINIMIZATION OF REED-MULLER CANONIC EXPANSION
    SALUJA, KK
    ONG, EH
    IEEE TRANSACTIONS ON COMPUTERS, 1979, 28 (07) : 535 - 537
  • [6] Hybrid forms of Reed-Muller expansions
    Green, DH
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1996, 81 (01) : 15 - 35
  • [7] FAMILIES OF REED-MULLER CANONICAL-FORMS
    GREEN, DH
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1991, 70 (02) : 259 - 280
  • [8] REED-MULLER CANONICAL FORMS IN MULTIVALUED LOGIC
    KODANDAPANI, KL
    SETLUR, RV
    IEEE TRANSACTIONS ON COMPUTERS, 1975, C 24 (06) : 628 - 636
  • [9] Optimal polarity for dual Reed-Muller expressions
    Faraj, Khalid.
    Almaini, A. E. A.
    NEW ASPECTS OF MICROELECTRONICS, NANOELECTRONICS, OPTOELECTRONICS, 2008, : 45 - +
  • [10] Fast coding for Dual Reed-Muller Expressions
    Faraj, Khalid
    RECENT ADVANCES IN ENGINEERING EDUCATION, 2009, : 212 - 219