Techniques for dual forms of Reed-Muller expansion conversion

被引:9
|
作者
Yang, M.
Wang, L. [1 ]
Tong, J. R.
Almaini, A. E. A.
机构
[1] Fudan Univ, Microelect Dept, State Key Lab ASIC & Syst, Shanghai 201203, Peoples R China
[2] Napier Polytech, Sch Engn, Edinburgh EH10 5DT, Midlothian, Scotland
基金
中国国家自然科学基金;
关键词
tabular technique; map technique; reed-muller; canonical OR coincidence;
D O I
10.1016/j.vlsi.2007.02.001
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Dual Forms of Reed-Muller (DFRM) are implemented in OR/XNOR forms, which are based on the features of coincidence operation. Map folding and transformation techniques are proposed for the conversion between Boolean and DFRM expansions. However, map techniques can only be used for up to 6 variables. To overcome the limitation, serial tabular technique (STT) and parallel tabular technique (PTT) are proposed. STT deals with one variable at a time while PTT generates terms in parallel. Both tabular techniques outperform significantly published work in terms of conversion time. Methods based on on-set canonical sum-of-products minterms and canonical product-of-sums maxterms are also investigated. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 50 条
  • [31] FFT analysis of fast tabular techniques for Reed-Muller expansions
    Stankovic, RS
    Falkowski, BJ
    ISIC-99: 8TH INTERNATIONAL SYMPOSIUM ON INTEGRATED CIRCUITS, DEVICES & SYSTEMS, PROCEEDINGS, 1999, : 382 - 385
  • [32] On Constructions of Reed-Muller Subcodes
    Van Wonterghem, Johannes
    Boutros, Joseph J.
    Moeneclaey, Marc
    IEEE COMMUNICATIONS LETTERS, 2018, 22 (02) : 220 - 223
  • [33] Testing Reed-Muller codes
    Alon, N
    Kaufman, T
    Krivelevich, M
    Litsyn, S
    Ron, D
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (11) : 4032 - 4039
  • [34] PROJECTIVE REED-MULLER CODES
    LACHAUD, G
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 311 : 125 - 129
  • [35] Local Correctabilities and Dual Codes of Symmetric Reed-Muller Codes
    Yan, Wei
    Lin, Sian-Jheng
    2021 IEEE INFORMATION THEORY WORKSHOP (ITW), 2021,
  • [36] Synthesis of Multi-Level Dual Reed-Muller Expressions
    Faraj, Khalid
    PROCEEDINGS OF THE 1ST WSEAS INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN NANOTECHNOLOGY, 2009, : 47 - 51
  • [37] An algorithm for reed-muller extraction
    Ye, Xien
    Mao, Keyi
    Xia, Yinshui
    2007 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS PROCEEDINGS, VOLS 1 AND 2: VOL 1: COMMUNICATION THEORY AND SYSTEMS; VOL 2: SIGNAL PROCESSING, COMPUTATIONAL INTELLIGENCE, CIRCUITS AND SYSTEMS, 2007, : 1330 - +
  • [38] Quaternary Reed-Muller codes
    Borges, J
    Fernández, C
    Phelps, KT
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (07) : 2686 - 2691
  • [39] Iterative Reed-Muller Decoding
    Geiselhart, Marvin
    Elkelesh, Ahmed
    Ebada, Moustafa
    Cammerer, Sebastian
    ten Brink, Stephan
    2021-11TH INTERNATIONAL SYMPOSIUM ON TOPICS IN CODING (ISTC'21), 2021,
  • [40] On the optimisation of Reed-Muller expressions
    Adams, KJ
    McGregor, J
    34TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2004, : 168 - 176