Techniques for dual forms of Reed-Muller expansion conversion

被引:9
|
作者
Yang, M.
Wang, L. [1 ]
Tong, J. R.
Almaini, A. E. A.
机构
[1] Fudan Univ, Microelect Dept, State Key Lab ASIC & Syst, Shanghai 201203, Peoples R China
[2] Napier Polytech, Sch Engn, Edinburgh EH10 5DT, Midlothian, Scotland
基金
中国国家自然科学基金;
关键词
tabular technique; map technique; reed-muller; canonical OR coincidence;
D O I
10.1016/j.vlsi.2007.02.001
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Dual Forms of Reed-Muller (DFRM) are implemented in OR/XNOR forms, which are based on the features of coincidence operation. Map folding and transformation techniques are proposed for the conversion between Boolean and DFRM expansions. However, map techniques can only be used for up to 6 variables. To overcome the limitation, serial tabular technique (STT) and parallel tabular technique (PTT) are proposed. STT deals with one variable at a time while PTT generates terms in parallel. Both tabular techniques outperform significantly published work in terms of conversion time. Methods based on on-set canonical sum-of-products minterms and canonical product-of-sums maxterms are also investigated. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 50 条
  • [41] ON A CONJECTURE ON REED-MULLER CODES
    WASAN, SK
    GAMES, RA
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1984, 56 (02) : 269 - 271
  • [42] Reed-Muller Codes Polarize
    Abbe, Emmanuel
    Ye, Min
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (12) : 7311 - 7332
  • [43] GENERALIZED REED-MULLER EXPANSIONS
    SWAMY, S
    IEEE TRANSACTIONS ON COMPUTERS, 1972, C 21 (09) : 1008 - &
  • [44] A Reed-Muller extraction utility
    Maxfield, C
    EDN, 1996, 41 (08) : 121 - &
  • [45] GENERALIZED REED-MULLER CODES
    KASAMI, T
    LIN, S
    PETERSON, WW
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1968, 51 (03): : 96 - &
  • [46] A NOTE ON REED-MULLER CODES
    DASS, BK
    MUTTOO, SK
    DISCRETE APPLIED MATHEMATICS, 1980, 2 (04) : 345 - 348
  • [47] Reed-Muller codes polarize
    Abbe, Emmanuel
    Ye, Min
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 273 - 286
  • [48] GENERALIZED REED-MULLER CODES
    WEISS, E
    INFORMATION AND CONTROL, 1962, 5 (03): : 213 - &
  • [49] PROJECTIVE REED-MULLER CODES
    SORENSEN, AB
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) : 1567 - 1576
  • [50] Symmetric Reed-Muller Codes
    Yan, Wei
    Lin, Sian-Jheng
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (07) : 3937 - 3947