DUAL FORMS OF REED-MULLER EXPANSIONS

被引:20
|
作者
GREEN, DH
机构
[1] Univ of Manchester Inst of Science, and Technology, Manchester
来源
关键词
REED-MULLER EXPANSIONS; PRODUCT-OF-SUMS EXPRESSIONS; KRONECKER EXPANSION; BOOLEAN ALGEBRA; BINARY SWITCHING FUNCTIONS;
D O I
10.1049/ip-cdt:19941097
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The dual forms of Reed-Muller expansions based on the operations of logical equivalence and OR are investigated. The transforms describing the various fixed and mixed polarity product-of-sums expressions are derived and shown to be easily related to their counterparts for the normal sum-of-products forms. It is demonstrated that if the synthesis is restricted to using only the consistent fixed or mixed polarity Kronecker-Reed-Muller expansions, these dual forms can have lower weight than any normal form for some functions. It is also shown by employing extended function vectors, so that no restriction is placed on the form of solution, that the optimum weight dual and normal extended vectors differ by at most one term.
引用
收藏
页码:184 / 192
页数:9
相关论文
共 50 条
  • [1] Hybrid forms of Reed-Muller expansions
    Green, DH
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1996, 81 (01) : 15 - 35
  • [2] Derivation of Reed-Muller expansions based on dual polarity
    Tan, EC
    Yang, H
    ISIC-99: 8TH INTERNATIONAL SYMPOSIUM ON INTEGRATED CIRCUITS, DEVICES & SYSTEMS, PROCEEDINGS, 1999, : 375 - 377
  • [3] GENERALIZED REED-MULLER EXPANSIONS
    SWAMY, S
    IEEE TRANSACTIONS ON COMPUTERS, 1972, C 21 (09) : 1008 - &
  • [4] Minimization of Dual Reed-Muller forms using Dual property
    Faraj, K.
    Almaini, A.E.A.
    WSEAS Transactions on Circuits and Systems, 2007, 6 (01): : 9 - 15
  • [5] Techniques for dual forms of Reed-Muller expansion conversion
    Yang, M.
    Wang, L.
    Tong, J. R.
    Almaini, A. E. A.
    INTEGRATION-THE VLSI JOURNAL, 2008, 41 (01) : 113 - 122
  • [6] VECTOR ALGORITHM FOR REED-MULLER EXPANSIONS
    CLARKSON, TG
    ZHUANG, N
    ELECTRONICS LETTERS, 1994, 30 (07) : 549 - 550
  • [7] Mixed Radix Reed-Muller Expansions
    Rafiev, Ashur
    Mokhov, Andrey
    Burns, Frank P.
    Murphy, Julian P.
    Koelmans, Albert
    Yakovlev, Alex
    IEEE TRANSACTIONS ON COMPUTERS, 2012, 61 (08) : 1189 - 1202
  • [8] Reed-Muller tree-based minimisation of fixed polarity Reed-Muller expansions
    Aborhey, S
    IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 2001, 148 (02): : 63 - 70
  • [9] Synthesis of multi-level Dual Reed-Muller forms
    Department of Computer Science, Wajdi Institute of Technology, P.O. Box 19014, Mount of Olives, Jerusalem, Israel
    WSEAS Transactions on Electronics, 2008, 5 (08): : 345 - 349
  • [10] Optimal expression for fixed polarity dual Reed-Muller forms
    Faraj, Khalid
    Almaini, A.E.A.
    WSEAS Transactions on Circuits and Systems, 2007, 6 (03): : 364 - 371