A new method for surface water extraction using multi-temporal Landsat 8 images based on maximum entropy model

被引:12
|
作者
Li, Wangping [1 ,2 ]
Zhang, Wanchang [3 ]
Li, Zhihong [1 ,2 ]
Wang, Yu [1 ,4 ]
Chen, Hao [5 ,6 ]
Gao, Huiran [3 ]
Zhou, Zhaoye [1 ,2 ]
Hao, Junming [1 ,2 ]
Li, Chuanhua [7 ]
Wu, Xiaodong [8 ,9 ]
机构
[1] Lanzhou Univ Technol, Sch Civil Engn, Lanzhou, Gansu, Peoples R China
[2] Emergency Mapping Engn Res Ctr Gansu, Lanzhou, Gansu, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing, Haidian, Peoples R China
[4] First Co China Eighth Engn Bur Ltd, Jinan, Shandong, Peoples R China
[5] Tianjin Univ, Sch Earth Syst Sci, Inst Surface Earth Syst Sci, Tianjin, Nankai, Peoples R China
[6] Tianjin Univ, Tianjin Key Lab Earth Crit Zone Sci & Sustainable, Tianjin, Peoples R China
[7] Northwest Normal Univ, Coll Geog & Environm Sci, Lanzhou, Gansu, Peoples R China
[8] Chinese Acad Sci, State Key Lab Cryospher Sci Northwest Inst Ecoenv, Cryosphere Res Stn Qinghai Tibet Plateau, Lanzhou 730070, Peoples R China
[9] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing, Shijingshan, Peoples R China
基金
中国国家自然科学基金; 中国科学院西部之光基金;
关键词
Maximum entropy model; spectral matching; remote sensing; Landsat 8_OLI; surface water extraction; normalized difference water index; BODY EXTRACTION; INUNDATION; REGION; INDEX; TM;
D O I
10.1080/22797254.2022.2062054
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The spectral matching algorithm based on the discrete particle swarm optimization algorithm (SMDPSO) sometimes overestimates extracted surface water areas. Here we constructed a new method (MEDPSO) by coupling discrete particle swarm optimization algorithm with maximum entropy model (MaxEnt) to extract water bodies using Landsat 8 Operational Land Imager (OLI) images. To compare the accuracy of the modified normalized difference water index (MNDWI), SMDPSO, and MEDPSO, we selected six areas , i.e. thermokarst lakes, Coongie Lakes National Park, the Amazon River, urban water bodies mixed with buildings, Erhai Lake that is surrounded by mountains, and high-altitude lakes. Our results show that the average overall accuracy of the MEDPSO for the six areas is 97.4%, which is higher than those of MNDWI and SMDPSO. The average commission errors and omission errors of MEDPSO (6.4% and 0.8%) are lower than those of MNDWI and SMDPSO. The MEDPSO has a higher accuracy because the maximum entropy model is a machine learning method that uses all the bands of Landsat imagery and four surface water indices in the calculation of the probability of surface water. Our study established a novel, high-precision water extraction method.
引用
收藏
页码:303 / 312
页数:10
相关论文
共 50 条
  • [41] A Novel Method of Unsupervised Change Detection Using Multi-Temporal PolSAR Images
    Liu, Wensong
    Yang, Jie
    Zhao, Jinqi
    Yang, Le
    REMOTE SENSING, 2017, 9 (11):
  • [42] Cropland Information Extraction Method of Landsat 8 OLI Images Based on Multi-seasonal Fractal Features
    Meng F.
    Zhu Q.
    Dong S.
    Liu Y.
    Zhang X.
    Pan Y.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2024, 55 (06): : 168 - 177
  • [43] Self-Guided Segmentation and Classification of Multi-Temporal Landsat 8 Images for Crop Type Mapping in Southeastern Brazil
    Schultz, Bruno
    Immitzer, Markus
    Formaggio, Antonio Roberto
    Sanches, Ieda Del' Arco
    Barreto Luiz, Alfredo Jose
    Atzberger, Clement
    REMOTE SENSING, 2015, 7 (11) : 14482 - 14508
  • [44] AUTOMATIC CO-REGISTRATION OF MULTI-TEMPORAL LANDSAT-8/OLI AND SENTINEL-2A/MSI IMAGES
    Skakun, S.
    Roger, J. -C.
    Vermote, E.
    Justice, C.
    Masek, J.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5272 - 5274
  • [45] A New Winter Wheat Crop Segmentation Method Based on a New Fast-UNet Model and Multi-Temporal Sentinel-2 Images
    Awad, Mohamad M.
    AGRONOMY-BASEL, 2024, 14 (10):
  • [46] A coastal band spectral combination for water body extraction using Landsat 8 images
    R. J. Aroma
    K. Raimond
    V. V. Estrela
    M. A. de Jesus
    International Journal of Environmental Science and Technology, 2024, 21 : 1767 - 1784
  • [47] A coastal band spectral combination for water body extraction using Landsat 8 images
    Aroma, R. J.
    Raimond, K.
    Estrela, V. V.
    de Jesus, M. A.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2024, 21 (02) : 1767 - 1784
  • [48] The Palu-Koro fault behaviour monitoring associated with the 2018 Palu earthquake based on the multi-temporal planetscope and Landsat 8 satellite images
    Dewanto, Bondan Galih
    Wijaya, Calvin
    Priadi, Ramadhan
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2025, 37
  • [49] Subpixel Surface Water Extraction (SSWE) Using Landsat 8 OLI Data
    Xiong, Longhai
    Deng, Ruru
    Li, Jun
    Liu, Xulong
    Qin, Yan
    Liang, Yeheng
    Liu, Yingfei
    WATER, 2018, 10 (05):
  • [50] Fodder crops assessment using multi-temporal Landsat-8 data by NDVI based classification in Haryana state of India
    Singh, Magan
    Dutta, Sujay
    Kala, Sumi
    Dwivedi, Shashank
    Meena, R. K.
    Meena, V. K.
    Kumar, Sanjeev
    Kumar, Himanshu
    Onte, Santosh
    RANGE MANAGEMENT AND AGROFORESTRY, 2020, 41 (01) : 67 - 73