A new method for surface water extraction using multi-temporal Landsat 8 images based on maximum entropy model

被引:12
|
作者
Li, Wangping [1 ,2 ]
Zhang, Wanchang [3 ]
Li, Zhihong [1 ,2 ]
Wang, Yu [1 ,4 ]
Chen, Hao [5 ,6 ]
Gao, Huiran [3 ]
Zhou, Zhaoye [1 ,2 ]
Hao, Junming [1 ,2 ]
Li, Chuanhua [7 ]
Wu, Xiaodong [8 ,9 ]
机构
[1] Lanzhou Univ Technol, Sch Civil Engn, Lanzhou, Gansu, Peoples R China
[2] Emergency Mapping Engn Res Ctr Gansu, Lanzhou, Gansu, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing, Haidian, Peoples R China
[4] First Co China Eighth Engn Bur Ltd, Jinan, Shandong, Peoples R China
[5] Tianjin Univ, Sch Earth Syst Sci, Inst Surface Earth Syst Sci, Tianjin, Nankai, Peoples R China
[6] Tianjin Univ, Tianjin Key Lab Earth Crit Zone Sci & Sustainable, Tianjin, Peoples R China
[7] Northwest Normal Univ, Coll Geog & Environm Sci, Lanzhou, Gansu, Peoples R China
[8] Chinese Acad Sci, State Key Lab Cryospher Sci Northwest Inst Ecoenv, Cryosphere Res Stn Qinghai Tibet Plateau, Lanzhou 730070, Peoples R China
[9] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing, Shijingshan, Peoples R China
基金
中国国家自然科学基金; 中国科学院西部之光基金;
关键词
Maximum entropy model; spectral matching; remote sensing; Landsat 8_OLI; surface water extraction; normalized difference water index; BODY EXTRACTION; INUNDATION; REGION; INDEX; TM;
D O I
10.1080/22797254.2022.2062054
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The spectral matching algorithm based on the discrete particle swarm optimization algorithm (SMDPSO) sometimes overestimates extracted surface water areas. Here we constructed a new method (MEDPSO) by coupling discrete particle swarm optimization algorithm with maximum entropy model (MaxEnt) to extract water bodies using Landsat 8 Operational Land Imager (OLI) images. To compare the accuracy of the modified normalized difference water index (MNDWI), SMDPSO, and MEDPSO, we selected six areas , i.e. thermokarst lakes, Coongie Lakes National Park, the Amazon River, urban water bodies mixed with buildings, Erhai Lake that is surrounded by mountains, and high-altitude lakes. Our results show that the average overall accuracy of the MEDPSO for the six areas is 97.4%, which is higher than those of MNDWI and SMDPSO. The average commission errors and omission errors of MEDPSO (6.4% and 0.8%) are lower than those of MNDWI and SMDPSO. The MEDPSO has a higher accuracy because the maximum entropy model is a machine learning method that uses all the bands of Landsat imagery and four surface water indices in the calculation of the probability of surface water. Our study established a novel, high-precision water extraction method.
引用
收藏
页码:303 / 312
页数:10
相关论文
共 50 条
  • [21] Automated Extraction for Water Bodies Using New Water Index from Landsat 8 OLI Images
    Pu YAN
    Yue FANG
    Jie CHEN
    Gang WANG
    Qingwei TANG
    JournalofGeodesyandGeoinformationScience, 2023, 6 (01) : 59 - 75
  • [22] THE USE OF BROADBAND VEGETATION INDICES IN CULTIVATED LAND DETECTION WITH LANDSAT 8 OLI MULTI-TEMPORAL IMAGES
    Alganci, Ugur
    FRESENIUS ENVIRONMENTAL BULLETIN, 2019, 28 (02): : 739 - 744
  • [23] Characterization of land cover types in Xilin River Basin using multi-temporal Landsat images
    CHEN Siqing 1
    2. Inst. of Geographic Sciences and Natural Resources Research
    3. Inst. for the Study of Earth
    Journal of Geographical Sciences, 2003, (02) : 5 - 12
  • [24] Characterization of land cover types in Xilin River Basin using multi-temporal Landsat images
    Chen Siqing
    Liu Jiyuan
    Zhuang Dafang
    Xiao Xiangming
    Journal of Geographical Sciences, 2003, 13 (2) : 131 - 138
  • [25] Vegetation Types Mapping Using Multi-Temporal Landsat Images in the Google Earth Engine Platform
    Aghababaei, Masoumeh
    Ebrahimi, Ataollah
    Naghipour, Ali Asghar
    Asadi, Esmaeil
    Verrelst, Jochem
    REMOTE SENSING, 2021, 13 (22)
  • [26] Monitoring benthic habitats using Lyzenga model features from Landsat multi-temporal images in Google Earth Engine
    Ahmed Fuad Ahmed
    Felix Nzive Mutua
    Benson Kipkemboi Kenduiywo
    Modeling Earth Systems and Environment, 2021, 7 : 2137 - 2143
  • [27] Examining the evolution of tidal creeks in the Huanghe River delta using multi-temporal Landsat images
    Han, Zhen
    Jin, Kai
    Zong, Quanli
    Qin, Peng
    Liu, Chunxia
    Zhu, Xiuzhi
    Li, Xinyue
    JOURNAL OF OCEANOLOGY AND LIMNOLOGY, 2024, 42 (04) : 1061 - 1073
  • [28] Monitoring benthic habitats using Lyzenga model features from Landsat multi-temporal images in Google Earth Engine
    Ahmed, Ahmed Fuad
    Mutua, Felix Nzive
    Kenduiywo, Benson Kipkemboi
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2021, 7 (03) : 2137 - 2143
  • [29] Multi-Temporal Landsat-8 Images for Retrieval and Broad Scale Mapping of Soil Copper Concentration Using Empirical Models
    Fang, Yuan
    Xu, Linlin
    Wong, Alexander
    Clausi, David A.
    REMOTE SENSING, 2022, 14 (10)
  • [30] Seasonal monitoring of urban heat island using multi-temporal Landsat and MODIS images in Tehran
    Bokaie, Mehdi
    Shamsipour, Aliakbar
    Khatibi, Padideh
    Hosseini, Ali
    INTERNATIONAL JOURNAL OF URBAN SCIENCES, 2019, 23 (02) : 269 - 285