A new method for surface water extraction using multi-temporal Landsat 8 images based on maximum entropy model

被引:12
|
作者
Li, Wangping [1 ,2 ]
Zhang, Wanchang [3 ]
Li, Zhihong [1 ,2 ]
Wang, Yu [1 ,4 ]
Chen, Hao [5 ,6 ]
Gao, Huiran [3 ]
Zhou, Zhaoye [1 ,2 ]
Hao, Junming [1 ,2 ]
Li, Chuanhua [7 ]
Wu, Xiaodong [8 ,9 ]
机构
[1] Lanzhou Univ Technol, Sch Civil Engn, Lanzhou, Gansu, Peoples R China
[2] Emergency Mapping Engn Res Ctr Gansu, Lanzhou, Gansu, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing, Haidian, Peoples R China
[4] First Co China Eighth Engn Bur Ltd, Jinan, Shandong, Peoples R China
[5] Tianjin Univ, Sch Earth Syst Sci, Inst Surface Earth Syst Sci, Tianjin, Nankai, Peoples R China
[6] Tianjin Univ, Tianjin Key Lab Earth Crit Zone Sci & Sustainable, Tianjin, Peoples R China
[7] Northwest Normal Univ, Coll Geog & Environm Sci, Lanzhou, Gansu, Peoples R China
[8] Chinese Acad Sci, State Key Lab Cryospher Sci Northwest Inst Ecoenv, Cryosphere Res Stn Qinghai Tibet Plateau, Lanzhou 730070, Peoples R China
[9] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing, Shijingshan, Peoples R China
基金
中国国家自然科学基金; 中国科学院西部之光基金;
关键词
Maximum entropy model; spectral matching; remote sensing; Landsat 8_OLI; surface water extraction; normalized difference water index; BODY EXTRACTION; INUNDATION; REGION; INDEX; TM;
D O I
10.1080/22797254.2022.2062054
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The spectral matching algorithm based on the discrete particle swarm optimization algorithm (SMDPSO) sometimes overestimates extracted surface water areas. Here we constructed a new method (MEDPSO) by coupling discrete particle swarm optimization algorithm with maximum entropy model (MaxEnt) to extract water bodies using Landsat 8 Operational Land Imager (OLI) images. To compare the accuracy of the modified normalized difference water index (MNDWI), SMDPSO, and MEDPSO, we selected six areas , i.e. thermokarst lakes, Coongie Lakes National Park, the Amazon River, urban water bodies mixed with buildings, Erhai Lake that is surrounded by mountains, and high-altitude lakes. Our results show that the average overall accuracy of the MEDPSO for the six areas is 97.4%, which is higher than those of MNDWI and SMDPSO. The average commission errors and omission errors of MEDPSO (6.4% and 0.8%) are lower than those of MNDWI and SMDPSO. The MEDPSO has a higher accuracy because the maximum entropy model is a machine learning method that uses all the bands of Landsat imagery and four surface water indices in the calculation of the probability of surface water. Our study established a novel, high-precision water extraction method.
引用
收藏
页码:303 / 312
页数:10
相关论文
共 50 条
  • [31] Examining the evolution of tidal creeks in the Huanghe River delta using multi-temporal Landsat images
    Zhen HAN
    Kai JIN
    Quanli ZONG
    Peng QIN
    Chunxia LIU
    Xiuzhi ZHU
    Xinyue LI
    JournalofOceanologyandLimnology, 2024, 42 (04) : 1061 - 1073
  • [32] Spatial and Multi-Temporal Analysis of Land Surface Temperature through Landsat 8 Images: Comparison of Algorithms in a Highly Polluted City (Granada)
    Hidalgo Garcia, David
    Arco Diaz, Julian
    REMOTE SENSING, 2021, 13 (05) : 1 - 27
  • [33] Mapping turbidity patterns in the Po river prodelta using multi-temporal Landsat 8 imagery
    Braga, Federica
    Zaggia, Luca
    Bellafiore, Debora
    Bresciani, Mariano
    Giardino, Claudia
    Lorenzetti, Giuliano
    Maicu, Francesco
    Manzo, Ciro
    Riminucci, Francesco
    Ravaioli, Mariangela
    Brand, Vittorio Ernesto
    ESTUARINE COASTAL AND SHELF SCIENCE, 2017, 198 : 555 - 567
  • [34] Multi-Temporal Independent Component Analysis and Landsat 8 for Delineating Maximum Extent of the 2013 Colorado Front Range Flood
    Chignell, Stephen M.
    Anderson, Ryan S.
    Evangelista, Paul H.
    Laituri, Melinda J.
    Merritt, David M.
    REMOTE SENSING, 2015, 7 (08) : 9822 - 9843
  • [35] Dynamic Mapping of Paddy Rice Using Multi-Temporal Landsat Data Based on a Deep Semantic Segmentation Model
    Du, Meiqi
    Huang, Jingfeng
    Wei, Pengliang
    Yang, Lingbo
    Chai, Dengfeng
    Peng, Dailiang
    Sha, Jinming
    Sun, Weiwei
    Huang, Ran
    AGRONOMY-BASEL, 2022, 12 (07):
  • [36] Mapping forest successional stages following deforestation in Brazilian Amazonia using multi-temporal Landsat images
    Espírto-Santo, FDB
    Shimabukuro, YE
    Kuplich, TM
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (03) : 635 - 642
  • [37] AUTOMATIC ROAD NETWORK EXTRACTION USING HIGH RESOLUTION MULTI-TEMPORAL SATELLITE IMAGES
    Pandit, Vinay
    Gupta, Sudhir
    Rajan, K. S.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 3697 - 3700
  • [38] Annual land-cover mapping based on multi-temporal cloud-contaminated landsat images
    Xie, Shuai
    Liu, Liangyun
    Zhang, Xiao
    Chen, Xidong
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (10) : 3855 - 3877
  • [39] The extraction of mangrove within intertidal zone based on multi-temporal HJ CCD images
    Li, Shanshan
    Tian, Qingjiu
    Yu, Tao
    Gu, Xingfa
    REMOTE SENSING OF THE ENVIRONMENT: THE 17TH CHINA CONFERENCE ON REMOTE SENSING, 2011, 8203
  • [40] Automatic Farmland Extraction From Multi-temporal Landsat TM Data Based On Artificial Neural Network
    Bai, Mu
    Liu, Huiping
    Huang, Wenli
    Qiao, Yu
    Mu, Xiaodong
    2009 17TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, VOLS 1 AND 2, 2009, : 346 - 349