The resolution of the Navier-Stokes equations in anisotropic spaces

被引:2
|
作者
Iftimie, D [1 ]
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove global existence and uniqueness for solutions of the 3-dimensional Navier-Stokes equations with small initial data in spaces which are H-delta i in the i-th direction, delta(1)+ delta(2) + delta(3) = 1/2, -1/2 < delta(i) < 1/2 and in a space which is L-2 in the first two directions and B-1,2(1/2) in the third direction, where H and B denote the usual homogeneous Sobolev and Besov spaces.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 50 条
  • [31] Convergence of the relaxed compressible Navier-Stokes equations to the incompressible Navier-Stokes equations
    Ju, Qiangchang
    Wang, Zhao
    APPLIED MATHEMATICS LETTERS, 2023, 141
  • [32] Uniqueness of the weak solution to the fractional anisotropic Navier-Stokes equations
    Sun, Xiaochun
    Liu, Huandi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) : 253 - 264
  • [33] SOME ESTIMATES FOR THE ANISOTROPIC NAVIER-STOKES EQUATIONS AND FOR THE HYDROSTATIC APPROXIMATION
    BESSON, O
    LAYDI, MR
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1992, 26 (07): : 855 - 865
  • [34] On an anisotropic Serrin criterion for weak solutions of the Navier-Stokes equations
    Levy, Guillaume
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 117 : 123 - 145
  • [35] ANALYSIS OF THE EXISTENCE FOR THE STEADY NAVIER-STOKES EQUATIONS WITH ANISOTROPIC DIFFUSION
    Antontsev, S. N.
    de Oliveira, H. B.
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2014, 19 (5-6) : 441 - 472
  • [36] Stokes and Navier-Stokes equations with Navier boundary condition
    Acevedo, Paul
    Amrouche, Cherif
    Conca, Carlos
    Ghosh, Amrita
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (02) : 115 - 119
  • [37] Stokes and Navier-Stokes equations with Navier boundary conditions
    Acevedo Tapia, P.
    Amrouche, C.
    Conca, C.
    Ghosh, A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 285 : 258 - 320
  • [38] Stochastic Navier-Stokes Equations for Turbulent Flows in Critical Spaces
    Agresti, Antonio
    Veraar, Mark
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (02)
  • [39] Weak Morrey spaces and strong solutions to the Navier-Stokes equations
    Chang-xing Miao
    Bao-quan Yuan
    Science in China Series A: Mathematics, 2007, 50 : 1401 - 1417
  • [40] Initial Values for the Navier-Stokes Equations in Spaces with Weights in Time
    Farwig, Reinhard
    Giga, Yoshikazu
    Hsu, Pen-Yuan
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2016, 59 (02): : 199 - 216