The resolution of the Navier-Stokes equations in anisotropic spaces

被引:2
|
作者
Iftimie, D [1 ]
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove global existence and uniqueness for solutions of the 3-dimensional Navier-Stokes equations with small initial data in spaces which are H-delta i in the i-th direction, delta(1)+ delta(2) + delta(3) = 1/2, -1/2 < delta(i) < 1/2 and in a space which is L-2 in the first two directions and B-1,2(1/2) in the third direction, where H and B denote the usual homogeneous Sobolev and Besov spaces.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 50 条
  • [41] Triebel-Lizorkin-Lorentz Spaces and the Navier-Stokes Equations
    Hobus, Pascal
    Saal, Juergen
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2019, 38 (01): : 41 - 72
  • [42] An alternative approach to regularity for the Navier-Stokes equations in critical spaces
    Kenig, Carlos E.
    Koch, Gabriel S.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (02): : 159 - 187
  • [43] THE ROLE OF MORREY SPACES IN THE STUDY OF NAVIER-STOKES AND EULER EQUATIONS
    Lemarie-Rieusset, P. G.
    EURASIAN MATHEMATICAL JOURNAL, 2012, 3 (03): : 62 - 93
  • [44] Weighted spaces with detached asymptotics in application to the Navier-Stokes equations
    Nazarov, SA
    ADVANCES IN MATHEMATICAL FLUID MECHANICS, 2000, : 159 - 191
  • [45] Global existence in critical spaces for compressible Navier-Stokes equations
    Danchin, R
    INVENTIONES MATHEMATICAE, 2000, 141 (03) : 579 - 614
  • [46] Multiwavelet characterization of function spaces adapted to the Navier-Stokes equations
    Lakey, J
    Obeidat, S
    Pereyra, MC
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2, 2000, 4119 : 372 - 383
  • [47] Flow Representation of the Navier-Stokes Equations in Weighted Sobolev Spaces
    Sirisubtawee, Sekson
    Manitcharoen, Naowarat
    Saksurakan, Chukiat
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2025, 23
  • [48] Regularity and stability for the solutions of the Navier-Stokes equations in Lorentz spaces
    Departamento de Matematica, La Plata, Argentina
    Nonlinear Anal Theory Methods Appl, 6 (747-764):
  • [49] Global existence in critical spaces for compressible Navier-Stokes equations
    R. Danchin
    Inventiones mathematicae, 2000, 141 : 579 - 614
  • [50] The Cauchy problem for fractional Navier-Stokes equations in Sobolev spaces
    Peng, Li
    Zhou, Yong
    Ahmad, Bashir
    Alsaedi, Ahmed
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 218 - 228