Dynamic Scheduling for Over-the-Air Federated Edge Learning With Energy Constraints

被引:46
|
作者
Sun, Yuxuan [1 ]
Zhou, Sheng [1 ]
Niu, Zhisheng [1 ]
Gunduz, Deniz [2 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2BT, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Federated edge learning; over-the-air computation; energy constraints; dynamic scheduling; Lyapunov optimization; CONVERGENCE; OPTIMIZATION; CHALLENGES; ALLOCATION; NETWORKS; DESIGN;
D O I
10.1109/JSAC.2021.3126078
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Machine learning and wireless communication technologies are jointly facilitating an intelligent edge, where federated edge learning (FEEL) is emerging as a promising training framework. As wireless devices involved in FEEL are resource limited in terms of communication bandwidth, computing power and battery capacity, it is important to carefully schedule them to optimize the training performance. In this work, we consider an over-the-air FEEL system with analog gradient aggregation, and propose an energy-aware dynamic device scheduling algorithm to optimize the training performance within the energy constraints of devices, where both communication energy for gradient aggregation and computation energy for local training are considered. The consideration of computation energy makes dynamic scheduling challenging, as devices are scheduled before local training, but the communication energy for over-the-air aggregation depends on the l(2)-norm of local gradient, which is known only after local training. We thus incorporate estimation methods into scheduling to predict the gradient norm. Taking the estimation error into account, we characterize the performance gap between the proposed algorithm and its offline counterpart. Experimental results show that, under a highly unbalanced local data distribution, the proposed algorithm can increase the accuracy by 4.9% on CIFAR-10 dataset compared with the myopic benchmark, while satisfying the energy constraints.
引用
收藏
页码:227 / 242
页数:16
相关论文
共 50 条
  • [32] Jamming-Resilient Over-the-Air Computation for Federated Learning in Edge Intelligence
    Zou, Yifei
    Xu, Minghui
    Li, Huiqun
    Hu, Qin
    Deng, Xianjun
    Yu, Dongxiao
    Cheng, Xiuzhen
    Proceedings - 2022 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Autonomous and Trusted Vehicles, Scalable Computing and Communications, Digital Twin, Privacy Computing, Metaverse, SmartWorld/UIC/ATC/ScalCom/DigitalTwin/PriComp/Metaverse 2022, 2022, : 81 - 88
  • [33] Over-the-Air Computation with DFT-spread OFDM for Federated Edge Learning
    Shin, Alphan
    Everette, Bryson
    Hoque, Safi Shams Muhtasimul
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 1886 - 1891
  • [34] Federated Learning with Partial Gradients Over-the-Air
    Wang, Wendi
    Chen, Zihan
    Pappas, Nikolaos
    Yang, Howard H.
    2023 20TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON SENSING, COMMUNICATION, AND NETWORKING, SECON, 2023,
  • [35] Energy Harvesting Aware Client Selection for Over-the-Air Federated Learning
    Chen, Caijuan
    Chiang, Yi-Han
    Lin, Hai
    Lui, John C. S.
    Ji, Yusheng
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 5069 - 5074
  • [36] Over-the-Air Federated Learning with Enhanced Privacy
    Xue, Xiaochan
    Hasan, Moh Khalid
    Yu, Shucheng
    Kandel, Laxima Niure
    Song, Min
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4546 - 4551
  • [37] Federated Learning via Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (03) : 2022 - 2035
  • [38] Federated Learning Based on Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [39] Inverse Feasibility in Over-the-Air Federated Learning
    Piotrowski, Tomasz
    Ismayilov, Rafail
    Frey, Matthias
    Cavalcante, Renato L. G.
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1434 - 1438
  • [40] COTAF: Convergent Over-the-Air Federated Learning
    Sery, Tomer
    Shlezinger, Nir
    Cohen, Kobi
    Eldar, Yonina C.
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,