Dynamic Scheduling for Over-the-Air Federated Edge Learning With Energy Constraints

被引:46
|
作者
Sun, Yuxuan [1 ]
Zhou, Sheng [1 ]
Niu, Zhisheng [1 ]
Gunduz, Deniz [2 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2BT, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Federated edge learning; over-the-air computation; energy constraints; dynamic scheduling; Lyapunov optimization; CONVERGENCE; OPTIMIZATION; CHALLENGES; ALLOCATION; NETWORKS; DESIGN;
D O I
10.1109/JSAC.2021.3126078
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Machine learning and wireless communication technologies are jointly facilitating an intelligent edge, where federated edge learning (FEEL) is emerging as a promising training framework. As wireless devices involved in FEEL are resource limited in terms of communication bandwidth, computing power and battery capacity, it is important to carefully schedule them to optimize the training performance. In this work, we consider an over-the-air FEEL system with analog gradient aggregation, and propose an energy-aware dynamic device scheduling algorithm to optimize the training performance within the energy constraints of devices, where both communication energy for gradient aggregation and computation energy for local training are considered. The consideration of computation energy makes dynamic scheduling challenging, as devices are scheduled before local training, but the communication energy for over-the-air aggregation depends on the l(2)-norm of local gradient, which is known only after local training. We thus incorporate estimation methods into scheduling to predict the gradient norm. Taking the estimation error into account, we characterize the performance gap between the proposed algorithm and its offline counterpart. Experimental results show that, under a highly unbalanced local data distribution, the proposed algorithm can increase the accuracy by 4.9% on CIFAR-10 dataset compared with the myopic benchmark, while satisfying the energy constraints.
引用
收藏
页码:227 / 242
页数:16
相关论文
共 50 条
  • [21] Private Over-the-Air Federated Learning at Band-Limited Edge
    Tao Y.
    Chen S.
    Zhang C.
    Wang D.
    Yu D.
    Cheng X.
    Dressler F.
    IEEE Transactions on Mobile Computing, 2024, 23 (12) : 1 - 17
  • [22] Broadband Digital Over-the-Air Computation for Wireless Federated Edge Learning
    You, Lizhao
    Zhao, Xinbo
    Cao, Rui
    Shao, Yulin
    Fu, Liqun
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (05) : 5212 - 5228
  • [23] OVER-THE-AIR PERSONALIZED FEDERATED LEARNING
    Sami, Hasin Us
    Guler, Basak
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 8777 - 8781
  • [24] Over-the-Air Federated Learning and Optimization
    Zhu, Jingyang
    Shi, Yuanming
    Zhou, Yong
    Jiang, Chunxiao
    Chen, Wei
    Letaief, Khaled B.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (10): : 16996 - 17020
  • [25] Robust Over-the-Air Federated Learning
    Kim, Hwanjin
    Nam, Hongjae
    Love, David J.
    2024 58TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, CISS, 2024,
  • [26] Broadband Digital Over-the-Air Computation for Asynchronous Federated Edge Learning
    Zhao, Xinbo
    You, Lizhao
    Rui Cao
    Shao, Yulin
    Fu, Liqun
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5359 - 5364
  • [27] Online Optimization for Over-the-Air Federated Learning With Energy Harvesting
    An, Qiaochu
    Zhou, Yong
    Wang, Zhibin
    Shan, Hangguan
    Shi, Yuanming
    Bennis, Mehdi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (07) : 7291 - 7306
  • [28] Data and Channel-Adaptive Sensor Scheduling for Federated Edge Learning via Over-the-Air Gradient Aggregation
    Su, Liqun
    Lau, Vincent K. N.
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (03) : 1640 - 1654
  • [29] Device Scheduling for Relay-Assisted Over-the-Air Aggregation in Federated Learning
    Zhang, Fan
    Chen, Jining
    Wang, Kunlun
    Chen, Wen
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (05) : 7412 - 7417
  • [30] Edge Federated Learning via Unit-Modulus Over-The-Air Computation
    Wang, Shuai
    Hong, Yuncong
    Wang, Rui
    Hao, Qi
    Wu, Yik-Chung
    Ng, Derrick Wing Kwan
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (05) : 3141 - 3156