Broadband Digital Over-the-Air Computation for Asynchronous Federated Edge Learning

被引:7
|
作者
Zhao, Xinbo [1 ]
You, Lizhao [1 ]
Rui Cao [1 ]
Shao, Yulin [2 ]
Fu, Liqun [1 ]
机构
[1] Xiamen Univ, Sch Informat, Xiamen, Peoples R China
[2] Imperial Coll London, Dept Elect & Elect Engn, London, England
关键词
D O I
10.1109/ICC45855.2022.9838947
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
This paper presents the first broadband digital over-the-air computation (AirComp) system for phase asynchronous OFDM-based federated edge learning systems. Existing analog AirComp systems often assume perfect phase alignment via channel precoding and utilize uncoded analog modulation for model aggregation. In contrast, our digital AirComp system leverages digital modulation and channel codes to overcome phase asynchrony, thereby achieving accurate model aggregation in the asynchronous multi-user OFDM systems. To realize a digital AirComp system, we propose a non-orthogonal multiple access protocol that allows simultaneous transmissions from multiple edge devices, and present a full-state joint channel decoding and aggregation (Jt-CDA) decoder. To reduce the computation complexity, we further present a reduced-complexity Jt-CDA decoder, and its arithmetic sum bit error rate performance is similar to that of the full-state joint decoder for most signal-to-noise ratio (SNR) regimes. Simulation results on test accuracy of CIFAR10 dataset versus SNR show that: 1) analog AirComp systems are sensitive to phase asynchrony under practical setup, and the test accuracy performance exhibits an error floor even at high SNR regime; 2) our digital AirComp system outperforms an analog AirComp system by at least 1.5 times when SNR >= 9dB, demonstrating the advantage of digital AirComp in asynchronous multi-user OFDM systems.
引用
收藏
页码:5359 / 5364
页数:6
相关论文
共 50 条
  • [1] Broadband Digital Over-the-Air Computation for Wireless Federated Edge Learning
    You, Lizhao
    Zhao, Xinbo
    Cao, Rui
    Shao, Yulin
    Fu, Liqun
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (05) : 5212 - 5228
  • [2] Semi-Asynchronous Federated Edge Learning for Over-the-air Computation
    Kou, Zhoubin
    Ji, Yun
    Zhong, Xiaoxiong
    Zhang, Sheng
    [J]. IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 1351 - 1356
  • [3] Asynchronous Federated Learning via Over-the-air Computation
    Zheng, Zijian
    Deng, Yansha
    Liu, Xiaonan
    Nallanathan, Arumugam
    [J]. IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 1345 - 1350
  • [4] Federated Edge Learning With Misaligned Over-the-Air Computation
    Shao, Yulin
    Gunduz, Deniz
    Liew, Soung Chang
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (06) : 3951 - 3964
  • [5] Federated Edge Learning with Misaligned Over-The-Air Computation
    Shao, Yulin
    Gunduz, Deniz
    Liew, Soung Chang
    [J]. SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2020, : 236 - 240
  • [6] Federated Learning Based on Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    [J]. ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [7] Federated Learning via Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (03) : 2022 - 2035
  • [8] Over-the-Air Computation for Vertical Federated Learning
    Zeng, Xiangyu
    Xia, Shuhao
    Yang, Kai
    Wu, Youlong
    Shi, Yuanming
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 788 - 793
  • [9] Hierarchical Over-the-Air Federated Edge Learning
    Aygun, Ozan
    Kazemi, Mohammad
    Gunduz, Deniz
    Duman, Tolga M.
    [J]. IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3376 - 3381
  • [10] An Overview on Over-the-Air Federated Edge Learning
    Cao, Xiaowen
    Lyu, Zhonghao
    Zhu, Guangxu
    Xu, Jie
    Xu, Lexi
    Cui, Shuguang
    [J]. IEEE WIRELESS COMMUNICATIONS, 2024, 31 (03) : 202 - 210