Inhomogeneous Diophantine approximation over the field of formal Laurent series

被引:6
|
作者
Ma, Chao [1 ]
Su, Wei-Yi [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
finite field; inhomogeneous Diophantine approximation; metric theory; exceptional sets; Hausdorff dimension;
D O I
10.1016/j.ffa.2007.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
De Mathan [B. de Mathan, Approximations diophantiennes dans un corps local, Bull. Soc. Math. France, Suppl. Mem. 21 (1970)] proved that Khintchine's theorem on homogeneous Diophantine approximation has an analogue in the field of formal Laurent series. Kristensen IS. Kristensen, On the well-approximable matrices over a field of formal series, Math. Proc. Cambridge Philos. Soc. 135 (2003) 255-268] extended this metric theorem to systems of linear forms and gave the exact Hausdorff dimension of the corresponding exceptional sets. In this paper, we study the inhomogeneous Diophantine approximation over a field of formal Laurent series, the analogue Khintchine's theorem and Jarnik-Besicovitch theorem are proved. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:361 / 378
页数:18
相关论文
共 50 条
  • [31] Inhomogeneous multiplicative Diophantine approximation on matrix approximation
    Zhang, Yuan
    Wang, Weiliang
    Li, Lu
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2023, 103 (1-2): : 79 - 96
  • [32] On Hausdorff dimension in inhomogeneous Diophantine approximation over global function fields
    Kim, Taehyeong
    Lim, Seonhee
    Paulin, Frederic
    JOURNAL OF NUMBER THEORY, 2023, 251 : 102 - 146
  • [33] SOME REMARKS ON FORMAL POWER SERIES AND FORMAL LAURENT SERIES
    Bugajewski, Dariusz
    Gan, Xiao-Xiong
    MATHEMATICA SLOVACA, 2017, 67 (03) : 631 - 644
  • [34] On the relative growth rate of degrees of partial quotients in continued fractions over the field of formal Laurent series
    Wu, Jun
    NONLINEARITY, 2009, 22 (06) : 1303 - 1310
  • [35] An analogue of a theorem of Szusz for formal Laurent series over finite fields
    Fuchs, M
    JOURNAL OF NUMBER THEORY, 2003, 101 (01) : 105 - 130
  • [36] PROPERTIES OF SOLUTIONS OF DIOPHANTINE INEQUALITIES IN THE FIELD OF A FORMAL POWER SERIES
    POSTNIKOV, AG
    DOKLADY AKADEMII NAUK SSSR, 1956, 106 (01): : 21 - 22
  • [37] Metric properties and exceptional sets of β-expansions over formal Laurent series
    Li, Bing
    Wu, Jun
    Xu, Jian
    MONATSHEFTE FUR MATHEMATIK, 2008, 155 (02): : 145 - 160
  • [38] Metric properties and exceptional sets of β-expansions over formal Laurent series
    Bing Li
    Jun Wu
    Jian Xu
    Monatshefte für Mathematik, 2008, 155 : 145 - 160
  • [39] Hausdorff Dimension in Inhomogeneous Diophantine Approximation
    Bugeaud, Yann
    Kim, Dong Han
    Lim, Seonhee
    Rams, Michal
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (03) : 2108 - 2133
  • [40] Inhomogeneous diophantine approximation on polynomials in Qp
    Bernik, V
    Dickinson, H
    Yuan, J
    ACTA ARITHMETICA, 1999, 90 (01) : 37 - 48